基于混合本体的文本自动分级信息提取

Fernando Gutierrez, D. Dou, Adam Martini, S. Fickas, Hui Zong
{"title":"基于混合本体的文本自动分级信息提取","authors":"Fernando Gutierrez, D. Dou, Adam Martini, S. Fickas, Hui Zong","doi":"10.1109/ICMLA.2013.73","DOIUrl":null,"url":null,"abstract":"Although automatic text grading systems have reached an accuracy level comparable to human grading, with successful commercial and research implementations (e.g., Latent Semantic Analysis), these systems can provide limited feedback about which statements of the text are incorrect and why they are incorrect. In the present work, we propose the use of a hybrid Ontology-based Information Extraction (OBIE) system to identify both correct and incorrect statements by combining extraction rules and machine learning based information extractors. Experiments show that given 77 student answers to a Cell Biology final exam question, our hybrid system can identify both correct and incorrect statements with high precision and recall measures.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Hybrid Ontology-Based Information Extraction for Automated Text Grading\",\"authors\":\"Fernando Gutierrez, D. Dou, Adam Martini, S. Fickas, Hui Zong\",\"doi\":\"10.1109/ICMLA.2013.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although automatic text grading systems have reached an accuracy level comparable to human grading, with successful commercial and research implementations (e.g., Latent Semantic Analysis), these systems can provide limited feedback about which statements of the text are incorrect and why they are incorrect. In the present work, we propose the use of a hybrid Ontology-based Information Extraction (OBIE) system to identify both correct and incorrect statements by combining extraction rules and machine learning based information extractors. Experiments show that given 77 student answers to a Cell Biology final exam question, our hybrid system can identify both correct and incorrect statements with high precision and recall measures.\",\"PeriodicalId\":168867,\"journal\":{\"name\":\"2013 12th International Conference on Machine Learning and Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2013.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

虽然自动文本评分系统已经达到了与人类评分相当的精度水平,并且成功地实现了商业和研究(例如,潜在语义分析),但这些系统只能提供有限的反馈,说明文本的哪些陈述是不正确的,以及为什么它们是不正确的。在目前的工作中,我们提出使用基于本体的混合信息提取(OBIE)系统,通过结合提取规则和基于机器学习的信息提取器来识别正确和错误的陈述。实验表明,在给定77个学生的细胞生物学期末考题答案的情况下,我们的混合系统可以以较高的准确率和召回率识别正确和错误的陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Ontology-Based Information Extraction for Automated Text Grading
Although automatic text grading systems have reached an accuracy level comparable to human grading, with successful commercial and research implementations (e.g., Latent Semantic Analysis), these systems can provide limited feedback about which statements of the text are incorrect and why they are incorrect. In the present work, we propose the use of a hybrid Ontology-based Information Extraction (OBIE) system to identify both correct and incorrect statements by combining extraction rules and machine learning based information extractors. Experiments show that given 77 student answers to a Cell Biology final exam question, our hybrid system can identify both correct and incorrect statements with high precision and recall measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信