HIPE-MAGIC:一种技术感知的合成和映射流,用于高度并行执行忆阻器辅助逻辑

A. Fayyazi, Amirhossein Esmaili, M. Pedram
{"title":"HIPE-MAGIC:一种技术感知的合成和映射流,用于高度并行执行忆阻器辅助逻辑","authors":"A. Fayyazi, Amirhossein Esmaili, M. Pedram","doi":"10.1145/3370748.3406557","DOIUrl":null,"url":null,"abstract":"Recent efforts for finding novel computing paradigms that meet today's design requirements have given rise to a new trend of processing-in-memory relying on non-volatile memories. In this paper, we present HIPE-MAGIC, a technology-aware synthesis and mapping flow for highly parallel execution of the memristor-based logic. Our framework is built upon two fundamental contributions: balancing techniques during the logic synthesis, mainly targeting benefits of the parallelism offered by memristive crossbar arrays (MCAs), and an efficient technology mapping framework to maximize the performance and area-efficiency of the memristor-based logic. Our experimental evaluations across several benchmark suites demonstrate the superior performance of HIPE-MAGIC in terms of throughput and energy efficiency compared to recently developed synthesis and mapping flows targeting MCAs, as well as the conventional CPU computing.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIPE-MAGIC: a technology-aware synthesis and mapping flow for highly parallel execution of memristor-aided LoGIC\",\"authors\":\"A. Fayyazi, Amirhossein Esmaili, M. Pedram\",\"doi\":\"10.1145/3370748.3406557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent efforts for finding novel computing paradigms that meet today's design requirements have given rise to a new trend of processing-in-memory relying on non-volatile memories. In this paper, we present HIPE-MAGIC, a technology-aware synthesis and mapping flow for highly parallel execution of the memristor-based logic. Our framework is built upon two fundamental contributions: balancing techniques during the logic synthesis, mainly targeting benefits of the parallelism offered by memristive crossbar arrays (MCAs), and an efficient technology mapping framework to maximize the performance and area-efficiency of the memristor-based logic. Our experimental evaluations across several benchmark suites demonstrate the superior performance of HIPE-MAGIC in terms of throughput and energy efficiency compared to recently developed synthesis and mapping flows targeting MCAs, as well as the conventional CPU computing.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近为寻找满足当今设计要求的新型计算范式所做的努力,导致了依赖非易失性存储器的内存处理的新趋势。在本文中,我们提出了HIPE-MAGIC,一种技术感知的合成和映射流程,用于高度并行执行基于忆阻器的逻辑。我们的框架建立在两个基本贡献之上:逻辑合成期间的平衡技术,主要针对忆阻交叉棒阵列(MCAs)提供的并行性的好处,以及有效的技术映射框架,以最大限度地提高基于忆阻器的逻辑的性能和面积效率。我们对几个基准测试套件的实验评估表明,与最近开发的针对mca的合成和映射流以及传统CPU计算相比,HIPE-MAGIC在吞吐量和能效方面具有卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIPE-MAGIC: a technology-aware synthesis and mapping flow for highly parallel execution of memristor-aided LoGIC
Recent efforts for finding novel computing paradigms that meet today's design requirements have given rise to a new trend of processing-in-memory relying on non-volatile memories. In this paper, we present HIPE-MAGIC, a technology-aware synthesis and mapping flow for highly parallel execution of the memristor-based logic. Our framework is built upon two fundamental contributions: balancing techniques during the logic synthesis, mainly targeting benefits of the parallelism offered by memristive crossbar arrays (MCAs), and an efficient technology mapping framework to maximize the performance and area-efficiency of the memristor-based logic. Our experimental evaluations across several benchmark suites demonstrate the superior performance of HIPE-MAGIC in terms of throughput and energy efficiency compared to recently developed synthesis and mapping flows targeting MCAs, as well as the conventional CPU computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信