ApproxTuner

Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi, Vikram S. Adve, Sasa Misailovic, S. Adve
{"title":"ApproxTuner","authors":"Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi, Vikram S. Adve, Sasa Misailovic, S. Adve","doi":"10.1145/3437801.3446108","DOIUrl":null,"url":null,"abstract":"Manually optimizing the tradeoffs between accuracy, performance and energy for resource-intensive applications with flexible accuracy or precision requirements is extremely difficult. We present ApproxTuner, an automatic framework for accuracy-aware optimization of tensor-based applications while requiring only high-level end-to-end quality specifications. ApproxTuner implements and manages approximations in algorithms, system software, and hardware. The key contribution in ApproxTuner is a novel three-phase approach to approximation-tuning that consists of development-time, install-time, and run-time phases. Our approach decouples tuning of hardware-independent and hardware-specific approximations, thus providing retargetability across devices. To enable efficient autotuning of approximation choices, we present a novel accuracy-aware tuning technique called predictive approximation-tuning, which significantly speeds up autotuning by analytically predicting the accuracy impacts of approximations. We evaluate ApproxTuner across 10 convolutional neural networks (CNNs) and a combined CNN and image processing benchmark. For the evaluated CNNs, using only hardware-independent approximation choices we achieve a mean speedup of 2.1x (max 2.7x) on a GPU, and 1.3x mean speedup (max 1.9x) on the CPU, while staying within 1 percentage point of inference accuracy loss. For two different accuracy-prediction models, ApproxTuner speeds up tuning by 12.8x and 20.4x compared to conventional empirical tuning while achieving comparable benefits.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"ApproxTuner\",\"authors\":\"Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi, Vikram S. Adve, Sasa Misailovic, S. Adve\",\"doi\":\"10.1145/3437801.3446108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manually optimizing the tradeoffs between accuracy, performance and energy for resource-intensive applications with flexible accuracy or precision requirements is extremely difficult. We present ApproxTuner, an automatic framework for accuracy-aware optimization of tensor-based applications while requiring only high-level end-to-end quality specifications. ApproxTuner implements and manages approximations in algorithms, system software, and hardware. The key contribution in ApproxTuner is a novel three-phase approach to approximation-tuning that consists of development-time, install-time, and run-time phases. Our approach decouples tuning of hardware-independent and hardware-specific approximations, thus providing retargetability across devices. To enable efficient autotuning of approximation choices, we present a novel accuracy-aware tuning technique called predictive approximation-tuning, which significantly speeds up autotuning by analytically predicting the accuracy impacts of approximations. We evaluate ApproxTuner across 10 convolutional neural networks (CNNs) and a combined CNN and image processing benchmark. For the evaluated CNNs, using only hardware-independent approximation choices we achieve a mean speedup of 2.1x (max 2.7x) on a GPU, and 1.3x mean speedup (max 1.9x) on the CPU, while staying within 1 percentage point of inference accuracy loss. For two different accuracy-prediction models, ApproxTuner speeds up tuning by 12.8x and 20.4x compared to conventional empirical tuning while achieving comparable benefits.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3446108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3446108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
ApproxTuner
Manually optimizing the tradeoffs between accuracy, performance and energy for resource-intensive applications with flexible accuracy or precision requirements is extremely difficult. We present ApproxTuner, an automatic framework for accuracy-aware optimization of tensor-based applications while requiring only high-level end-to-end quality specifications. ApproxTuner implements and manages approximations in algorithms, system software, and hardware. The key contribution in ApproxTuner is a novel three-phase approach to approximation-tuning that consists of development-time, install-time, and run-time phases. Our approach decouples tuning of hardware-independent and hardware-specific approximations, thus providing retargetability across devices. To enable efficient autotuning of approximation choices, we present a novel accuracy-aware tuning technique called predictive approximation-tuning, which significantly speeds up autotuning by analytically predicting the accuracy impacts of approximations. We evaluate ApproxTuner across 10 convolutional neural networks (CNNs) and a combined CNN and image processing benchmark. For the evaluated CNNs, using only hardware-independent approximation choices we achieve a mean speedup of 2.1x (max 2.7x) on a GPU, and 1.3x mean speedup (max 1.9x) on the CPU, while staying within 1 percentage point of inference accuracy loss. For two different accuracy-prediction models, ApproxTuner speeds up tuning by 12.8x and 20.4x compared to conventional empirical tuning while achieving comparable benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信