多值函数Haar小波变换和Haar谱变换决策图的设计

R. Stankovic, M. Stankovic, C. Moraga
{"title":"多值函数Haar小波变换和Haar谱变换决策图的设计","authors":"R. Stankovic, M. Stankovic, C. Moraga","doi":"10.1109/ISMVL.2001.924589","DOIUrl":null,"url":null,"abstract":"In spectral interpretation, decision diagrams (DDs) are defined in terms of some spectral transforms. For a given DD, the related transform is determined by an analysis of expansion rules used in the nodes and the related labels of edges. The converse task, design of a DD in terms of a given spectral transform often requires decomposition of basic functions in spectral transform to determine the corresponding expansion rules and labels at the edges. We point out that this problem relates to the assignment of nodes in Pseudo-Kronecker DDs(PKDDs). Due to that, we generalize the definition of Haar spectral transform DDs (HSTDDs) to multiple-valued (MV) functions. Conversely, from such defined HSTDDs, we derive various Haar transforms for MV functions.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of Haar wavelet transforms and Haar spectral transform decision diagrams for multiple-valued functions\",\"authors\":\"R. Stankovic, M. Stankovic, C. Moraga\",\"doi\":\"10.1109/ISMVL.2001.924589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spectral interpretation, decision diagrams (DDs) are defined in terms of some spectral transforms. For a given DD, the related transform is determined by an analysis of expansion rules used in the nodes and the related labels of edges. The converse task, design of a DD in terms of a given spectral transform often requires decomposition of basic functions in spectral transform to determine the corresponding expansion rules and labels at the edges. We point out that this problem relates to the assignment of nodes in Pseudo-Kronecker DDs(PKDDs). Due to that, we generalize the definition of Haar spectral transform DDs (HSTDDs) to multiple-valued (MV) functions. Conversely, from such defined HSTDDs, we derive various Haar transforms for MV functions.\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在光谱解释中,决策图(dd)是根据一些光谱变换来定义的。对于给定的DD,通过分析节点中使用的展开规则和边缘的相关标签来确定相关变换。相反的任务,根据给定的谱变换设计一个DD,通常需要对谱变换中的基本函数进行分解,以确定相应的展开规则和边缘标记。我们指出这个问题涉及到Pseudo-Kronecker dd (pkdd)中的节点分配问题。因此,我们将Haar谱变换的定义推广到多值函数(MV)。反过来,从这些定义的hstdd,我们得到了MV函数的各种Haar变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Haar wavelet transforms and Haar spectral transform decision diagrams for multiple-valued functions
In spectral interpretation, decision diagrams (DDs) are defined in terms of some spectral transforms. For a given DD, the related transform is determined by an analysis of expansion rules used in the nodes and the related labels of edges. The converse task, design of a DD in terms of a given spectral transform often requires decomposition of basic functions in spectral transform to determine the corresponding expansion rules and labels at the edges. We point out that this problem relates to the assignment of nodes in Pseudo-Kronecker DDs(PKDDs). Due to that, we generalize the definition of Haar spectral transform DDs (HSTDDs) to multiple-valued (MV) functions. Conversely, from such defined HSTDDs, we derive various Haar transforms for MV functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信