热输入对低合金钢平板双相不锈钢药芯电弧焊包层耐蚀性的影响

M. Saha, J. Mondal, Ajit Mondal, Santanu Das
{"title":"热输入对低合金钢平板双相不锈钢药芯电弧焊包层耐蚀性的影响","authors":"M. Saha, J. Mondal, Ajit Mondal, Santanu Das","doi":"10.22486/IWJ/2018/V51/I3/175002","DOIUrl":null,"url":null,"abstract":"Cladding is deposition of material on a corrosion-prone substrate to protect it from corrosion. Duplex stainless steel cladding is reported to have the ability to offer good corrosion resistance. In the present work, duplex stainless steel (E2209 T0-1) filler material is used for depositing a single layer with 50% overlap on E250 low alloy steel substrate using FCAW process with 100% CO as shielding gas. Three sets of heat input are chosen for the 2 experiment. Each set has different welding voltage and current, whereas travel speed has been kept constant for all experimental runs. Experiments have been replicated twice. 24-hour accelerated corrosion test is conducted on the clad surface in ferric chloride and hydrochloric acid solution. Results obtained from corrosion test indicate that all clad parts have better pitting corrosion resistance than the base metal. Corrosion resistance of clad parts exhibits decreasing tendency with greater heat input on the whole. Polynomial regression analysis is used to establish the quadratic relationship between heat input and pitting corrosion rate that indicate corrosion rate to increase with increase in heat input. ANOVA table depicts that the results obtained in pitting corrosion test against different heat input conditions are significant with high (95%) confidence level. The value of R2 (0.7014) indicates fairly good association between heat input and corrosion rate.","PeriodicalId":393849,"journal":{"name":"Indian Welding Journal","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of Heat input on Corrosion Resistance of Duplex Stainless Steel Cladding using Flux Cored Arc Welding on Low Alloy Steel Flats\",\"authors\":\"M. Saha, J. Mondal, Ajit Mondal, Santanu Das\",\"doi\":\"10.22486/IWJ/2018/V51/I3/175002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cladding is deposition of material on a corrosion-prone substrate to protect it from corrosion. Duplex stainless steel cladding is reported to have the ability to offer good corrosion resistance. In the present work, duplex stainless steel (E2209 T0-1) filler material is used for depositing a single layer with 50% overlap on E250 low alloy steel substrate using FCAW process with 100% CO as shielding gas. Three sets of heat input are chosen for the 2 experiment. Each set has different welding voltage and current, whereas travel speed has been kept constant for all experimental runs. Experiments have been replicated twice. 24-hour accelerated corrosion test is conducted on the clad surface in ferric chloride and hydrochloric acid solution. Results obtained from corrosion test indicate that all clad parts have better pitting corrosion resistance than the base metal. Corrosion resistance of clad parts exhibits decreasing tendency with greater heat input on the whole. Polynomial regression analysis is used to establish the quadratic relationship between heat input and pitting corrosion rate that indicate corrosion rate to increase with increase in heat input. ANOVA table depicts that the results obtained in pitting corrosion test against different heat input conditions are significant with high (95%) confidence level. The value of R2 (0.7014) indicates fairly good association between heat input and corrosion rate.\",\"PeriodicalId\":393849,\"journal\":{\"name\":\"Indian Welding Journal\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Welding Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22486/IWJ/2018/V51/I3/175002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Welding Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22486/IWJ/2018/V51/I3/175002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

包层是在易腐蚀的基材上沉积材料,以保护其免受腐蚀。据报道,双相不锈钢包层具有良好的耐腐蚀性。本工作采用双相不锈钢(E2209 T0-1)填充材料,以100% CO作为保护气体,采用FCAW工艺在E250低合金钢基体上沉积50%重叠的单层。2实验选择了三组热输入。每一组具有不同的焊接电压和电流,而行进速度在所有的实验运行中都保持不变。实验已经重复进行了两次。在三氯化铁和盐酸溶液中对覆层表面进行了24小时加速腐蚀试验。腐蚀试验结果表明,复合件的抗点蚀性能均优于母材。随着热输入量的增加,熔覆件的耐蚀性总体上呈下降趋势。采用多项式回归分析,建立了热输入与点蚀速率之间的二次关系,表明腐蚀速率随热输入的增加而增加。方差分析表显示,在不同热输入条件下的点蚀试验中获得的结果具有高(95%)置信度。R2值为0.7014,表明热输入与腐蚀速率有较好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Heat input on Corrosion Resistance of Duplex Stainless Steel Cladding using Flux Cored Arc Welding on Low Alloy Steel Flats
Cladding is deposition of material on a corrosion-prone substrate to protect it from corrosion. Duplex stainless steel cladding is reported to have the ability to offer good corrosion resistance. In the present work, duplex stainless steel (E2209 T0-1) filler material is used for depositing a single layer with 50% overlap on E250 low alloy steel substrate using FCAW process with 100% CO as shielding gas. Three sets of heat input are chosen for the 2 experiment. Each set has different welding voltage and current, whereas travel speed has been kept constant for all experimental runs. Experiments have been replicated twice. 24-hour accelerated corrosion test is conducted on the clad surface in ferric chloride and hydrochloric acid solution. Results obtained from corrosion test indicate that all clad parts have better pitting corrosion resistance than the base metal. Corrosion resistance of clad parts exhibits decreasing tendency with greater heat input on the whole. Polynomial regression analysis is used to establish the quadratic relationship between heat input and pitting corrosion rate that indicate corrosion rate to increase with increase in heat input. ANOVA table depicts that the results obtained in pitting corrosion test against different heat input conditions are significant with high (95%) confidence level. The value of R2 (0.7014) indicates fairly good association between heat input and corrosion rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信