{"title":"具有多种混沌行为的多突方程仿真电路","authors":"Denil V. Robinson, A. C. S.","doi":"10.1109/SAS48726.2020.9220060","DOIUrl":null,"url":null,"abstract":"This paper presents the design, mathematical background and performance studies of a new chaotic emulator circuit. The circuit exhibits various chaotic phenomena by emulating multiple jerk equations. The circuit is designed using simple and easy-to-use components like operational amplifiers, passive components, and a single switch. It uses an inductor-free and diode-less architecture; thus eliminating the nonideal parameters of these elements. The circuit operates in three modes; each mode exhibiting a different chaotic behaviour. Detailed working of the circuit and its ability to follow jerk equations are explained in the paper. This is followed by performance studies, first using a SPICE software and then using experimentation. These studies validate the capacity of the proposed circuit to emulate multiple jerk equations and various chaotic attractors. The experimental studies corroborate well with simulation and results mentioned in previous works.","PeriodicalId":223737,"journal":{"name":"2020 IEEE Sensors Applications Symposium (SAS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Jerk Equation Emulator Circuit Exhibiting Various Chaotic Behaviours\",\"authors\":\"Denil V. Robinson, A. C. S.\",\"doi\":\"10.1109/SAS48726.2020.9220060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, mathematical background and performance studies of a new chaotic emulator circuit. The circuit exhibits various chaotic phenomena by emulating multiple jerk equations. The circuit is designed using simple and easy-to-use components like operational amplifiers, passive components, and a single switch. It uses an inductor-free and diode-less architecture; thus eliminating the nonideal parameters of these elements. The circuit operates in three modes; each mode exhibiting a different chaotic behaviour. Detailed working of the circuit and its ability to follow jerk equations are explained in the paper. This is followed by performance studies, first using a SPICE software and then using experimentation. These studies validate the capacity of the proposed circuit to emulate multiple jerk equations and various chaotic attractors. The experimental studies corroborate well with simulation and results mentioned in previous works.\",\"PeriodicalId\":223737,\"journal\":{\"name\":\"2020 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS48726.2020.9220060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS48726.2020.9220060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-Jerk Equation Emulator Circuit Exhibiting Various Chaotic Behaviours
This paper presents the design, mathematical background and performance studies of a new chaotic emulator circuit. The circuit exhibits various chaotic phenomena by emulating multiple jerk equations. The circuit is designed using simple and easy-to-use components like operational amplifiers, passive components, and a single switch. It uses an inductor-free and diode-less architecture; thus eliminating the nonideal parameters of these elements. The circuit operates in three modes; each mode exhibiting a different chaotic behaviour. Detailed working of the circuit and its ability to follow jerk equations are explained in the paper. This is followed by performance studies, first using a SPICE software and then using experimentation. These studies validate the capacity of the proposed circuit to emulate multiple jerk equations and various chaotic attractors. The experimental studies corroborate well with simulation and results mentioned in previous works.