重型汽车气动座椅乘坐舒适性仿真

H. Choi, Whe-Ro Lee, Jong-chan Park, Kee-Young Yang
{"title":"重型汽车气动座椅乘坐舒适性仿真","authors":"H. Choi, Whe-Ro Lee, Jong-chan Park, Kee-Young Yang","doi":"10.3384/ECP1814812","DOIUrl":null,"url":null,"abstract":"The design of driver's seat suspension of the commercial truck differs from the one of the passenger car. The vibration and the structural characteristics of the suspension are consequently quite different. Unlike passenger cars, the vibration frequency of commercial truck suspensions is considerably low at 1 to 3 Hz. (Mayton, 2006). The truck seat has an air ride seat. The structural design of air ride seat at heavy-duty vehicle includes serial and parallel combinations of the shock absorber, air spring, and PU foam pad to achieve a good vibration damping. The 1D lumped network solution is an effective design tool with the multi-physical subcomponents. And this also enables a direct coupling into the system modeling of the vehicle body for an optimal calibration of engineering parameters taking the relevant dynamic performance of neighboring parts into account. The mechanical characteristics of each component and their assembly were identified for the 1D modeling. The result of validation and verification of the proposing 1D model of the air ride seat is also introduced.","PeriodicalId":378465,"journal":{"name":"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Riding Comfort Simulation with air ride seat for heavy duty vehicle\",\"authors\":\"H. Choi, Whe-Ro Lee, Jong-chan Park, Kee-Young Yang\",\"doi\":\"10.3384/ECP1814812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of driver's seat suspension of the commercial truck differs from the one of the passenger car. The vibration and the structural characteristics of the suspension are consequently quite different. Unlike passenger cars, the vibration frequency of commercial truck suspensions is considerably low at 1 to 3 Hz. (Mayton, 2006). The truck seat has an air ride seat. The structural design of air ride seat at heavy-duty vehicle includes serial and parallel combinations of the shock absorber, air spring, and PU foam pad to achieve a good vibration damping. The 1D lumped network solution is an effective design tool with the multi-physical subcomponents. And this also enables a direct coupling into the system modeling of the vehicle body for an optimal calibration of engineering parameters taking the relevant dynamic performance of neighboring parts into account. The mechanical characteristics of each component and their assembly were identified for the 1D modeling. The result of validation and verification of the proposing 1D model of the air ride seat is also introduced.\",\"PeriodicalId\":378465,\"journal\":{\"name\":\"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP1814812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP1814812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

商用卡车驾驶员座椅悬架的设计与乘用车不同。因此,悬架的振动和结构特性是完全不同的。与乘用车不同,商用卡车悬架的振动频率相当低,为1至3hz。(Mayton, 2006)。卡车座椅有一个空中座椅。重型汽车空气坐垫的结构设计包括减振器、空气弹簧和PU泡沫垫的串并联组合,以达到良好的减振效果。一维集总网络解决方案是一种具有多物理子组件的有效设计工具。这也使其能够直接耦合到车身的系统建模中,从而在考虑相邻部件相关动态性能的情况下对工程参数进行最佳校准。确定了每个部件及其装配的力学特性,并进行了一维建模。文中还介绍了所提出的航空座椅一维模型的验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riding Comfort Simulation with air ride seat for heavy duty vehicle
The design of driver's seat suspension of the commercial truck differs from the one of the passenger car. The vibration and the structural characteristics of the suspension are consequently quite different. Unlike passenger cars, the vibration frequency of commercial truck suspensions is considerably low at 1 to 3 Hz. (Mayton, 2006). The truck seat has an air ride seat. The structural design of air ride seat at heavy-duty vehicle includes serial and parallel combinations of the shock absorber, air spring, and PU foam pad to achieve a good vibration damping. The 1D lumped network solution is an effective design tool with the multi-physical subcomponents. And this also enables a direct coupling into the system modeling of the vehicle body for an optimal calibration of engineering parameters taking the relevant dynamic performance of neighboring parts into account. The mechanical characteristics of each component and their assembly were identified for the 1D modeling. The result of validation and verification of the proposing 1D model of the air ride seat is also introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信