{"title":"高中生与语境化微分方程的语言相关斗争","authors":"Zakaria Ndemo","doi":"10.11648/J.IJAMTP.20190501.13","DOIUrl":null,"url":null,"abstract":"Upon observing with concern that the majority of high school students experienced severe language related difficulties when solving contextualized differential equations, the researcher then decided to investigate the kinds of such challenges and their impact on students’ learning of differential equations. A sample of 10 mathematics students was selected from one urban high school in one province in Zimbabwe. Written tasks and follow up interviews were employed as data collection tools for the study. Content analysis technique was applied to the written responses and interview transcriptions to obtain a revealing picture of how the kinds of the language related challenges interfere with the growth of mathematical content. The study revealed that the students struggled with interpreting and formulating differential equations from given mathematical situations. Further, interpretation of given initial conditions posed a challenge to the learners. A major consequence of these language related challenges was that the students could not generate complete solutions and lack of interplay between conceptual and procedural fluency was one of the insights generated from this study with regards to the learning of differential equations. The study findings have important implications for instruction in high school mathematics lessons such as the need to develop and foster the students’ abilities to engage in adaptive reasoning and use multiple modes of presenting content in order to promote students’ understanding of contextualized differential equations.","PeriodicalId":367229,"journal":{"name":"International Journal of Applied Mathematics and Theoretical Physics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High School Students’ Language Related Struggles with Contextualized Differential Equations\",\"authors\":\"Zakaria Ndemo\",\"doi\":\"10.11648/J.IJAMTP.20190501.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upon observing with concern that the majority of high school students experienced severe language related difficulties when solving contextualized differential equations, the researcher then decided to investigate the kinds of such challenges and their impact on students’ learning of differential equations. A sample of 10 mathematics students was selected from one urban high school in one province in Zimbabwe. Written tasks and follow up interviews were employed as data collection tools for the study. Content analysis technique was applied to the written responses and interview transcriptions to obtain a revealing picture of how the kinds of the language related challenges interfere with the growth of mathematical content. The study revealed that the students struggled with interpreting and formulating differential equations from given mathematical situations. Further, interpretation of given initial conditions posed a challenge to the learners. A major consequence of these language related challenges was that the students could not generate complete solutions and lack of interplay between conceptual and procedural fluency was one of the insights generated from this study with regards to the learning of differential equations. The study findings have important implications for instruction in high school mathematics lessons such as the need to develop and foster the students’ abilities to engage in adaptive reasoning and use multiple modes of presenting content in order to promote students’ understanding of contextualized differential equations.\",\"PeriodicalId\":367229,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJAMTP.20190501.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAMTP.20190501.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High School Students’ Language Related Struggles with Contextualized Differential Equations
Upon observing with concern that the majority of high school students experienced severe language related difficulties when solving contextualized differential equations, the researcher then decided to investigate the kinds of such challenges and their impact on students’ learning of differential equations. A sample of 10 mathematics students was selected from one urban high school in one province in Zimbabwe. Written tasks and follow up interviews were employed as data collection tools for the study. Content analysis technique was applied to the written responses and interview transcriptions to obtain a revealing picture of how the kinds of the language related challenges interfere with the growth of mathematical content. The study revealed that the students struggled with interpreting and formulating differential equations from given mathematical situations. Further, interpretation of given initial conditions posed a challenge to the learners. A major consequence of these language related challenges was that the students could not generate complete solutions and lack of interplay between conceptual and procedural fluency was one of the insights generated from this study with regards to the learning of differential equations. The study findings have important implications for instruction in high school mathematics lessons such as the need to develop and foster the students’ abilities to engage in adaptive reasoning and use multiple modes of presenting content in order to promote students’ understanding of contextualized differential equations.