具有人类形态的腿式机器人:设计与控制

R. Zaier, Omer Dirdiry
{"title":"具有人类形态的腿式机器人:设计与控制","authors":"R. Zaier, Omer Dirdiry","doi":"10.1109/SCC47175.2019.9116106","DOIUrl":null,"url":null,"abstract":"This paper presents the design and control of a bio-inspired legged robot with a passive toe joint. This legged robot will be utilized to study human gait and particularly pathological gaits. Hence, the leg structure is designed so that it can generate a similar gait of that of human. In addition, the parts of the legs need to be made of light materials mainly, aluminum and carbon fiber. The locomotion control of the legged robot is designed so that the overall control system with respect to the rolling motion is approximated by the Van der Pol oscillator. The controlled plant, in this case, is modeled as an inverted pendulum. Few control parameters are introduced to modulate the rolling motion and make it adaptive with the stride. The parameters of the locomotion controller can be tuned so that the closed loop system exhibits a stable limit cycle. The controller is then evaluated throughout simulation results using a full model of the biomechanical legs. To validate the simulation model, the Zero Moment Point (ZMP) method is utilized. The ZMP locations are obtained using the parameters of the full simulation model and compared with that of the measured ZMP using the ground reaction forces.","PeriodicalId":133593,"journal":{"name":"2019 International Conference on Signal, Control and Communication (SCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Legged Robots with Human Morphology: Design and Control\",\"authors\":\"R. Zaier, Omer Dirdiry\",\"doi\":\"10.1109/SCC47175.2019.9116106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and control of a bio-inspired legged robot with a passive toe joint. This legged robot will be utilized to study human gait and particularly pathological gaits. Hence, the leg structure is designed so that it can generate a similar gait of that of human. In addition, the parts of the legs need to be made of light materials mainly, aluminum and carbon fiber. The locomotion control of the legged robot is designed so that the overall control system with respect to the rolling motion is approximated by the Van der Pol oscillator. The controlled plant, in this case, is modeled as an inverted pendulum. Few control parameters are introduced to modulate the rolling motion and make it adaptive with the stride. The parameters of the locomotion controller can be tuned so that the closed loop system exhibits a stable limit cycle. The controller is then evaluated throughout simulation results using a full model of the biomechanical legs. To validate the simulation model, the Zero Moment Point (ZMP) method is utilized. The ZMP locations are obtained using the parameters of the full simulation model and compared with that of the measured ZMP using the ground reaction forces.\",\"PeriodicalId\":133593,\"journal\":{\"name\":\"2019 International Conference on Signal, Control and Communication (SCC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Signal, Control and Communication (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC47175.2019.9116106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC47175.2019.9116106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种具有被动趾关节的仿生腿机器人的设计与控制。这种有腿机器人将用于研究人类步态,特别是病理步态。因此,设计了腿结构,使其能够产生类似人类的步态。此外,腿的部分需要以轻质材料为主,铝和碳纤维。对腿式机器人的运动控制进行了设计,使整个控制系统对滚动运动的控制近似为范德波尔振荡器。在这种情况下,被控制的植物被建模为一个倒立摆。引入少量的控制参数对滚动运动进行调节,使其与步幅自适应。运动控制器的参数可调,使闭环系统呈现稳定的极限环。然后使用生物力学腿的完整模型对控制器进行整个仿真结果评估。为了验证仿真模型,采用了零力矩点法(ZMP)。利用全模拟模型的参数得到了ZMP的位置,并利用地面反作用力与实测ZMP的位置进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Legged Robots with Human Morphology: Design and Control
This paper presents the design and control of a bio-inspired legged robot with a passive toe joint. This legged robot will be utilized to study human gait and particularly pathological gaits. Hence, the leg structure is designed so that it can generate a similar gait of that of human. In addition, the parts of the legs need to be made of light materials mainly, aluminum and carbon fiber. The locomotion control of the legged robot is designed so that the overall control system with respect to the rolling motion is approximated by the Van der Pol oscillator. The controlled plant, in this case, is modeled as an inverted pendulum. Few control parameters are introduced to modulate the rolling motion and make it adaptive with the stride. The parameters of the locomotion controller can be tuned so that the closed loop system exhibits a stable limit cycle. The controller is then evaluated throughout simulation results using a full model of the biomechanical legs. To validate the simulation model, the Zero Moment Point (ZMP) method is utilized. The ZMP locations are obtained using the parameters of the full simulation model and compared with that of the measured ZMP using the ground reaction forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信