Theodoros Tsourdinis, N. Makris, S. Fdida, T. Korakis
{"title":"基于drl的MEC云原生5G及以上网络的业务迁移","authors":"Theodoros Tsourdinis, N. Makris, S. Fdida, T. Korakis","doi":"10.1109/NetSoft57336.2023.10175417","DOIUrl":null,"url":null,"abstract":"Multi-access Edge Computing (MEC) has been considered one of the most prominent enablers for low-latency access to services provided over the telecommunications network. Nevertheless, client mobility, as well as external factors which impact the communication channel can severely deteriorate the eventual user-perceived latency times. Such processes can be averted by migrating the provided services to other edges, while the end-user changes their base station association as they move within the serviced region. In this work, we start from an entirely virtualized cloud-native 5G network based on the OpenAirInterface platform and develop our architecture for providing seamless live migration of edge services. On top of this infrastructure, we employ a Deep Reinforcement Learning (DRL) approach that is able to proactively relocate services to new edges, subject to the user’s multi-cell latency measurements and the workload status of the servers. We evaluate our scheme in a testbed setup by emulating mobility using realistic mobility patterns and workloads from real-world clusters. Our results denote that our scheme is capable sustain low-latency values for the end users, based on their mobility within the serviced region.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks\",\"authors\":\"Theodoros Tsourdinis, N. Makris, S. Fdida, T. Korakis\",\"doi\":\"10.1109/NetSoft57336.2023.10175417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-access Edge Computing (MEC) has been considered one of the most prominent enablers for low-latency access to services provided over the telecommunications network. Nevertheless, client mobility, as well as external factors which impact the communication channel can severely deteriorate the eventual user-perceived latency times. Such processes can be averted by migrating the provided services to other edges, while the end-user changes their base station association as they move within the serviced region. In this work, we start from an entirely virtualized cloud-native 5G network based on the OpenAirInterface platform and develop our architecture for providing seamless live migration of edge services. On top of this infrastructure, we employ a Deep Reinforcement Learning (DRL) approach that is able to proactively relocate services to new edges, subject to the user’s multi-cell latency measurements and the workload status of the servers. We evaluate our scheme in a testbed setup by emulating mobility using realistic mobility patterns and workloads from real-world clusters. Our results denote that our scheme is capable sustain low-latency values for the end users, based on their mobility within the serviced region.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks
Multi-access Edge Computing (MEC) has been considered one of the most prominent enablers for low-latency access to services provided over the telecommunications network. Nevertheless, client mobility, as well as external factors which impact the communication channel can severely deteriorate the eventual user-perceived latency times. Such processes can be averted by migrating the provided services to other edges, while the end-user changes their base station association as they move within the serviced region. In this work, we start from an entirely virtualized cloud-native 5G network based on the OpenAirInterface platform and develop our architecture for providing seamless live migration of edge services. On top of this infrastructure, we employ a Deep Reinforcement Learning (DRL) approach that is able to proactively relocate services to new edges, subject to the user’s multi-cell latency measurements and the workload status of the servers. We evaluate our scheme in a testbed setup by emulating mobility using realistic mobility patterns and workloads from real-world clusters. Our results denote that our scheme is capable sustain low-latency values for the end users, based on their mobility within the serviced region.