DeepHash

Yuanning Gao, Xiaofeng Gao, Guihai Chen
{"title":"DeepHash","authors":"Yuanning Gao, Xiaofeng Gao, Guihai Chen","doi":"10.1145/3337821.3337924","DOIUrl":null,"url":null,"abstract":"In distributed file systems, distributed metadata management can be considered as a mapping problem, i.e., how to effectively map the metadata namespace tree to multiple metadata servers (MDS's). In general, all traditional distributed metadata management schemes simply presume a rigid mapping function, thus failing to adaptively meet the requirements of different applications. To better take advantage of the current distribution of the metadata, in this exploratory paper, we present the first machine learning based model called DeepHash, which leverages the deep neural network to learn a locality preserving hashing (LPH) mapping. To help learn a good position relationship of metadata nodes in the namespace tree, we first present a metadata representation strategy. Due to the absence of training labels, i.e., the hash values of metadata nodes, we design two kinds of loss functions with distinctive characters to train DeepHash respectively, including a pair loss and a triplet loss, and introduce some sampling strategies for these two approaches. We conduct extensive experiments on Amazon EC2 platform to compare the performance of DeepHash with traditional and state-of-the-art schemes. The results demonstrate that DeepHash can preserve the metadata locality well while maintaining a high load balancing, which denotes the effectiveness and efficiency of DeepHash.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DeepHash\",\"authors\":\"Yuanning Gao, Xiaofeng Gao, Guihai Chen\",\"doi\":\"10.1145/3337821.3337924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In distributed file systems, distributed metadata management can be considered as a mapping problem, i.e., how to effectively map the metadata namespace tree to multiple metadata servers (MDS's). In general, all traditional distributed metadata management schemes simply presume a rigid mapping function, thus failing to adaptively meet the requirements of different applications. To better take advantage of the current distribution of the metadata, in this exploratory paper, we present the first machine learning based model called DeepHash, which leverages the deep neural network to learn a locality preserving hashing (LPH) mapping. To help learn a good position relationship of metadata nodes in the namespace tree, we first present a metadata representation strategy. Due to the absence of training labels, i.e., the hash values of metadata nodes, we design two kinds of loss functions with distinctive characters to train DeepHash respectively, including a pair loss and a triplet loss, and introduce some sampling strategies for these two approaches. We conduct extensive experiments on Amazon EC2 platform to compare the performance of DeepHash with traditional and state-of-the-art schemes. The results demonstrate that DeepHash can preserve the metadata locality well while maintaining a high load balancing, which denotes the effectiveness and efficiency of DeepHash.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepHash
In distributed file systems, distributed metadata management can be considered as a mapping problem, i.e., how to effectively map the metadata namespace tree to multiple metadata servers (MDS's). In general, all traditional distributed metadata management schemes simply presume a rigid mapping function, thus failing to adaptively meet the requirements of different applications. To better take advantage of the current distribution of the metadata, in this exploratory paper, we present the first machine learning based model called DeepHash, which leverages the deep neural network to learn a locality preserving hashing (LPH) mapping. To help learn a good position relationship of metadata nodes in the namespace tree, we first present a metadata representation strategy. Due to the absence of training labels, i.e., the hash values of metadata nodes, we design two kinds of loss functions with distinctive characters to train DeepHash respectively, including a pair loss and a triplet loss, and introduce some sampling strategies for these two approaches. We conduct extensive experiments on Amazon EC2 platform to compare the performance of DeepHash with traditional and state-of-the-art schemes. The results demonstrate that DeepHash can preserve the metadata locality well while maintaining a high load balancing, which denotes the effectiveness and efficiency of DeepHash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信