{"title":"关于凸度量","authors":"C. Witzgall","doi":"10.6028/JRES.069B.021","DOIUrl":null,"url":null,"abstract":"Given a finit e number of points PI, ., PI.\" in th e plane, consider the proble m of findin g a point x that minimizes the sum of Euclidean distances 'Ld(p; , x) . More general versions of thi s proble m arise in s patial economics, concerning opti mal locations for a central office , plant, or ware ho use (compare [3]). Mos t of these will be based on me trics d more general than th e Euclidean metric. Among them, th e class of metri cs that are convex fun ctions in each variable co mmand partic ular interest: in thi s case, local minima are automati cally global minima, facilitating minimization decisively. We s hall show in thi s paper that convex metrics are invariant under translation, and therefore arise from a norm. For th e concepts of topologies, metrics , and norms in linear spaces see, for instance, [1)2 and [2]. 1. Metrics and norms. Le t L be a linear s pace over the fi eld R of real numbers. A fun ction f: L -7 R is convex if","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1965-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On convex metrics\",\"authors\":\"C. Witzgall\",\"doi\":\"10.6028/JRES.069B.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a finit e number of points PI, ., PI.\\\" in th e plane, consider the proble m of findin g a point x that minimizes the sum of Euclidean distances 'Ld(p; , x) . More general versions of thi s proble m arise in s patial economics, concerning opti mal locations for a central office , plant, or ware ho use (compare [3]). Mos t of these will be based on me trics d more general than th e Euclidean metric. Among them, th e class of metri cs that are convex fun ctions in each variable co mmand partic ular interest: in thi s case, local minima are automati cally global minima, facilitating minimization decisively. We s hall show in thi s paper that convex metrics are invariant under translation, and therefore arise from a norm. For th e concepts of topologies, metrics , and norms in linear spaces see, for instance, [1)2 and [2]. 1. Metrics and norms. Le t L be a linear s pace over the fi eld R of real numbers. A fun ction f: L -7 R is convex if\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.069B.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.069B.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
给定平面上有限个点(PI, ., PI.),考虑求一个点x使欧几里德距离之和最小的问题m (p;, x)。这个问题的更一般的版本出现在局部经济学中,涉及到中心办公室、工厂或仓库的最佳位置(比较b[3])。其中大部分将基于比欧几里得度规更通用的度量。其中,在每个变量中都是凸函数的度量类引起了特别的兴趣:在这种情况下,局部最小值自动成为全局最小值,从而促进了决定性的最小化。我们将在本文中证明凸度量在平移下是不变的,因此是由范数产生的。关于线性空间中的拓扑、度量和范数的概念,例如参见[1)2和[2]。1. 度量标准和规范。设L是实数域R上的线性s步。一个有趣的函数f: L - 7r是凸函数
Given a finit e number of points PI, ., PI." in th e plane, consider the proble m of findin g a point x that minimizes the sum of Euclidean distances 'Ld(p; , x) . More general versions of thi s proble m arise in s patial economics, concerning opti mal locations for a central office , plant, or ware ho use (compare [3]). Mos t of these will be based on me trics d more general than th e Euclidean metric. Among them, th e class of metri cs that are convex fun ctions in each variable co mmand partic ular interest: in thi s case, local minima are automati cally global minima, facilitating minimization decisively. We s hall show in thi s paper that convex metrics are invariant under translation, and therefore arise from a norm. For th e concepts of topologies, metrics , and norms in linear spaces see, for instance, [1)2 and [2]. 1. Metrics and norms. Le t L be a linear s pace over the fi eld R of real numbers. A fun ction f: L -7 R is convex if