选择性激光熔化的原位光学层析成像

Connor Seavers, T. Chu
{"title":"选择性激光熔化的原位光学层析成像","authors":"Connor Seavers, T. Chu","doi":"10.32548/rs.2022.034","DOIUrl":null,"url":null,"abstract":"Selective laser melting (SLM) has become one of the most common metal additive manufacturing (AM) processes in industries such as medical and aerospace due to its ability to produce highly specialized end-use parts of great complexity. However, current SLM products are prone to process-induced defects, most importantly porosity, which can greatly alter the strength of the part. Therefore, in this study, in-situ monitoring is investigated as a method for detecting the formation of defects during the SLM process. Layerwise optical tomography (OT) images are collected during SLM fabrication of six test samples with planned defects, and subsequently undergo image processing and analysis for identification of anomalous signatures during the build process. The image processing framework employs an average squared difference (ASD) metric to elucidate defects within the image, then feeds the output into an automated k-means clustering algorithm for segmentation and classification. While the k-means classification approach ultimately proved to be sensitive to noise in the images, the image processing workflow was still able to isolate defects, often providing a clear segmentation of the defect in the final output.","PeriodicalId":367504,"journal":{"name":"ASNT 30th Research Symposium Conference Proceedings","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Optical Tomography for Selective Laser Melting\",\"authors\":\"Connor Seavers, T. Chu\",\"doi\":\"10.32548/rs.2022.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective laser melting (SLM) has become one of the most common metal additive manufacturing (AM) processes in industries such as medical and aerospace due to its ability to produce highly specialized end-use parts of great complexity. However, current SLM products are prone to process-induced defects, most importantly porosity, which can greatly alter the strength of the part. Therefore, in this study, in-situ monitoring is investigated as a method for detecting the formation of defects during the SLM process. Layerwise optical tomography (OT) images are collected during SLM fabrication of six test samples with planned defects, and subsequently undergo image processing and analysis for identification of anomalous signatures during the build process. The image processing framework employs an average squared difference (ASD) metric to elucidate defects within the image, then feeds the output into an automated k-means clustering algorithm for segmentation and classification. While the k-means classification approach ultimately proved to be sensitive to noise in the images, the image processing workflow was still able to isolate defects, often providing a clear segmentation of the defect in the final output.\",\"PeriodicalId\":367504,\"journal\":{\"name\":\"ASNT 30th Research Symposium Conference Proceedings\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASNT 30th Research Symposium Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32548/rs.2022.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASNT 30th Research Symposium Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32548/rs.2022.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

选择性激光熔化(SLM)已成为医疗和航空航天等行业中最常见的金属增材制造(AM)工艺之一,因为它能够生产高度专业化的复杂最终用途部件。然而,目前的SLM产品容易产生工艺缺陷,最重要的是孔隙率,这可以极大地改变零件的强度。因此,本研究将现场监测作为一种检测SLM过程中缺陷形成的方法进行研究。分层光学层析成像(OT)图像收集在SLM制造六个测试样品计划的缺陷,随后进行图像处理和分析,以识别在构建过程中的异常特征。图像处理框架采用平均平方差(ASD)度量来阐明图像中的缺陷,然后将输出输入自动k-means聚类算法进行分割和分类。虽然k-means分类方法最终被证明对图像中的噪声很敏感,但图像处理工作流程仍然能够隔离缺陷,通常在最终输出中提供对缺陷的清晰分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-Situ Optical Tomography for Selective Laser Melting
Selective laser melting (SLM) has become one of the most common metal additive manufacturing (AM) processes in industries such as medical and aerospace due to its ability to produce highly specialized end-use parts of great complexity. However, current SLM products are prone to process-induced defects, most importantly porosity, which can greatly alter the strength of the part. Therefore, in this study, in-situ monitoring is investigated as a method for detecting the formation of defects during the SLM process. Layerwise optical tomography (OT) images are collected during SLM fabrication of six test samples with planned defects, and subsequently undergo image processing and analysis for identification of anomalous signatures during the build process. The image processing framework employs an average squared difference (ASD) metric to elucidate defects within the image, then feeds the output into an automated k-means clustering algorithm for segmentation and classification. While the k-means classification approach ultimately proved to be sensitive to noise in the images, the image processing workflow was still able to isolate defects, often providing a clear segmentation of the defect in the final output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信