大型低温风洞温敏涂料配方优化

Y. Iijima, Y. Egami, A. Nishizawa, K. Asai, U. Fey, R. Engler
{"title":"大型低温风洞温敏涂料配方优化","authors":"Y. Iijima, Y. Egami, A. Nishizawa, K. Asai, U. Fey, R. Engler","doi":"10.1109/ICIASF.2003.1274854","DOIUrl":null,"url":null,"abstract":"In this paper, a new temperature-sensitive paint (TSP) technique for boundary-layer transition detection in a production-type large cryogenic wind tunnel is present. The formulation of Ru(trpy) based TSP system has been optimized in terms of luminescence intensity and robustness. The optimum dye-binder-solvent combination has been determined through systematic sample tests. A new binder has been introduced and the resulting coating was found free from cracking at cryogenic temperatures. This is contrary to the silicone-based pervious cryogenic TSP that are subject to micro cracks at reduced temperatures. The new TSP can meet the root-mean-square roughness requirement less than 0.15 /spl mu/m. Experiments in the NAL 0.1-m transonic cryogenic wind tunnel have shown that transition occurs earlier on the unpolished surface than the polished surface, although the roughness value itself increasing by polishing. This suggests that the waviness of the coating could affect on the growth of instability in boundary layers.","PeriodicalId":166420,"journal":{"name":"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels\",\"authors\":\"Y. Iijima, Y. Egami, A. Nishizawa, K. Asai, U. Fey, R. Engler\",\"doi\":\"10.1109/ICIASF.2003.1274854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new temperature-sensitive paint (TSP) technique for boundary-layer transition detection in a production-type large cryogenic wind tunnel is present. The formulation of Ru(trpy) based TSP system has been optimized in terms of luminescence intensity and robustness. The optimum dye-binder-solvent combination has been determined through systematic sample tests. A new binder has been introduced and the resulting coating was found free from cracking at cryogenic temperatures. This is contrary to the silicone-based pervious cryogenic TSP that are subject to micro cracks at reduced temperatures. The new TSP can meet the root-mean-square roughness requirement less than 0.15 /spl mu/m. Experiments in the NAL 0.1-m transonic cryogenic wind tunnel have shown that transition occurs earlier on the unpolished surface than the polished surface, although the roughness value itself increasing by polishing. This suggests that the waviness of the coating could affect on the growth of instability in boundary layers.\",\"PeriodicalId\":166420,\"journal\":{\"name\":\"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASF.2003.1274854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASF.2003.1274854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种用于生产型大型低温风洞边界层跃迁检测的温度敏感涂料(TSP)新技术。从发光强度和鲁棒性两方面对Ru(trpy)基TSP体系的配方进行了优化。通过系统的样品试验,确定了最佳的染料-粘合剂-溶剂组合。引入了一种新的粘结剂,并发现所得到的涂层在低温下不会开裂。这与硅基透水低温TSP相反,后者在低温下会产生微裂纹。新的TSP可以满足均方根粗糙度小于0.15 /spl mu/m的要求。在NAL 0.1 m跨声速低温风洞中进行的实验表明,尽管粗糙度值本身随着抛光而增加,但未抛光表面的转变发生得比抛光表面早。这表明涂层的波纹度会影响边界层不稳定性的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels
In this paper, a new temperature-sensitive paint (TSP) technique for boundary-layer transition detection in a production-type large cryogenic wind tunnel is present. The formulation of Ru(trpy) based TSP system has been optimized in terms of luminescence intensity and robustness. The optimum dye-binder-solvent combination has been determined through systematic sample tests. A new binder has been introduced and the resulting coating was found free from cracking at cryogenic temperatures. This is contrary to the silicone-based pervious cryogenic TSP that are subject to micro cracks at reduced temperatures. The new TSP can meet the root-mean-square roughness requirement less than 0.15 /spl mu/m. Experiments in the NAL 0.1-m transonic cryogenic wind tunnel have shown that transition occurs earlier on the unpolished surface than the polished surface, although the roughness value itself increasing by polishing. This suggests that the waviness of the coating could affect on the growth of instability in boundary layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信