基于瑞利衰落信道的广义检测器的四元DS-SSMA通信

V. Tuzlukov
{"title":"基于瑞利衰落信道的广义检测器的四元DS-SSMA通信","authors":"V. Tuzlukov","doi":"10.37394/232014.2020.16.6","DOIUrl":null,"url":null,"abstract":"This paper deals with an employment of the complex modulators and generalized receivers constructed based on the generalized approach to signal processing (GASP) in noise in quaternary direct-sequence spread-spectrum multiple-access (DS-SSMA) communication systems with complex signature sequences in flat Rayleigh fading. Owing to availability of large sets of complex spreading sequences possessing perfect correlation characteristics, the interest to use the complex spreading sequences in DS-SSMA communication systems has increased. The complex spreading sequences investigated in the present paper are based on the recently introduced orthogonal unified complex Hadamard transform (UCHN) sequences. In the present paper, the complex processing in modulators and generalized receivers is also employed with the purpose to take advantage of the correlation properties of complex signature sequences. We derive the average bit error rate (BER) for quarternary synchronous communications system based on the generalized approach to signal processing in noise first, and then the BER for quaternary asynchronous ones is evaluated using the characteristic function approach. We presented some results based on the Gaussian approximation method for asynchronous communication systems constructed on the basis of the generalized approach to signal processing in noise Computer modeling results demonstrate that the communication systems using UCHT spreading sequences perform generally better than the GOLD sequences and the 4-phase family A sequences. Comparative analysis between the asynchronous communication systems constructed on the basis of the generalized approach to signal processing in noise demonstrates superiority over the asynchronous communication systems employing the correlation receiver.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quaternary DS-SSMA Communications Employing Generalized Detector over Rayleigh Fading Channels\",\"authors\":\"V. Tuzlukov\",\"doi\":\"10.37394/232014.2020.16.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with an employment of the complex modulators and generalized receivers constructed based on the generalized approach to signal processing (GASP) in noise in quaternary direct-sequence spread-spectrum multiple-access (DS-SSMA) communication systems with complex signature sequences in flat Rayleigh fading. Owing to availability of large sets of complex spreading sequences possessing perfect correlation characteristics, the interest to use the complex spreading sequences in DS-SSMA communication systems has increased. The complex spreading sequences investigated in the present paper are based on the recently introduced orthogonal unified complex Hadamard transform (UCHN) sequences. In the present paper, the complex processing in modulators and generalized receivers is also employed with the purpose to take advantage of the correlation properties of complex signature sequences. We derive the average bit error rate (BER) for quarternary synchronous communications system based on the generalized approach to signal processing in noise first, and then the BER for quaternary asynchronous ones is evaluated using the characteristic function approach. We presented some results based on the Gaussian approximation method for asynchronous communication systems constructed on the basis of the generalized approach to signal processing in noise Computer modeling results demonstrate that the communication systems using UCHT spreading sequences perform generally better than the GOLD sequences and the 4-phase family A sequences. Comparative analysis between the asynchronous communication systems constructed on the basis of the generalized approach to signal processing in noise demonstrates superiority over the asynchronous communication systems employing the correlation receiver.\",\"PeriodicalId\":305800,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232014.2020.16.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2020.16.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于广义信号处理方法(GASP)的复调制器和广义接收机在四元直接序列扩频多址(DS-SSMA)通信系统中的应用。由于大量具有完美相关特性的复扩展序列的可用性,在DS-SSMA通信系统中使用复扩展序列的兴趣日益增加。本文研究的复扩展序列是基于最近引入的正交统一复Hadamard变换(UCHN)序列。在本文中,为了利用复特征序列的相关特性,在调制器和广义接收机中也采用了复杂处理。首先基于噪声信号处理的广义方法推导了四元同步通信系统的平均误码率,然后利用特征函数法计算了四元异步通信系统的平均误码率。本文给出了基于高斯近似方法的异步通信系统的一些结果,这些结果是基于噪声中信号处理的广义方法构建的。计算机建模结果表明,使用UCHT扩展序列的通信系统总体上优于GOLD序列和4相A族序列。通过对基于噪声信号处理的广义方法构建的异步通信系统的对比分析,证明了采用相关接收机的异步通信系统的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternary DS-SSMA Communications Employing Generalized Detector over Rayleigh Fading Channels
This paper deals with an employment of the complex modulators and generalized receivers constructed based on the generalized approach to signal processing (GASP) in noise in quaternary direct-sequence spread-spectrum multiple-access (DS-SSMA) communication systems with complex signature sequences in flat Rayleigh fading. Owing to availability of large sets of complex spreading sequences possessing perfect correlation characteristics, the interest to use the complex spreading sequences in DS-SSMA communication systems has increased. The complex spreading sequences investigated in the present paper are based on the recently introduced orthogonal unified complex Hadamard transform (UCHN) sequences. In the present paper, the complex processing in modulators and generalized receivers is also employed with the purpose to take advantage of the correlation properties of complex signature sequences. We derive the average bit error rate (BER) for quarternary synchronous communications system based on the generalized approach to signal processing in noise first, and then the BER for quaternary asynchronous ones is evaluated using the characteristic function approach. We presented some results based on the Gaussian approximation method for asynchronous communication systems constructed on the basis of the generalized approach to signal processing in noise Computer modeling results demonstrate that the communication systems using UCHT spreading sequences perform generally better than the GOLD sequences and the 4-phase family A sequences. Comparative analysis between the asynchronous communication systems constructed on the basis of the generalized approach to signal processing in noise demonstrates superiority over the asynchronous communication systems employing the correlation receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信