基于性能计数器的深度学习移动gpu功耗建模

Nadjib Mammeri, Markus Neu, S. Lal, B. Juurlink
{"title":"基于性能计数器的深度学习移动gpu功耗建模","authors":"Nadjib Mammeri, Markus Neu, S. Lal, B. Juurlink","doi":"10.1109/HPCS48598.2019.9188139","DOIUrl":null,"url":null,"abstract":"GPUs have recently become important computational units on mobile devices, resulting in heterogeneous devices that can run a variety of parallel processing applications. While developing and optimizing such applications, estimating power consumption is of immense importance as energy efficiency has become the key design constraint to optimize for on these platforms. In this work, we apply deep learning techniques in building a predictive model for estimating power consumption of parallel applications on a heterogeneous mobile SoC. Our model is an artificial neural network (NN) trained using CPU and GPU hardware performance counters along with measured power data. The model is trained and evaluated with data collected using a set of graphics OpenGL workloads as well as OpenCL compute benchmarks. Our evaluations show that our model can achieve accurate power estimates with a mean relative error of 4.47% with respect to real power measurements. When compared to other models, our NN model is about 3.3x better than a statistical linear regression model and 2x better than a state-of-the-art NN model.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Counters based Power Modeling of Mobile GPUs using Deep Learning\",\"authors\":\"Nadjib Mammeri, Markus Neu, S. Lal, B. Juurlink\",\"doi\":\"10.1109/HPCS48598.2019.9188139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPUs have recently become important computational units on mobile devices, resulting in heterogeneous devices that can run a variety of parallel processing applications. While developing and optimizing such applications, estimating power consumption is of immense importance as energy efficiency has become the key design constraint to optimize for on these platforms. In this work, we apply deep learning techniques in building a predictive model for estimating power consumption of parallel applications on a heterogeneous mobile SoC. Our model is an artificial neural network (NN) trained using CPU and GPU hardware performance counters along with measured power data. The model is trained and evaluated with data collected using a set of graphics OpenGL workloads as well as OpenCL compute benchmarks. Our evaluations show that our model can achieve accurate power estimates with a mean relative error of 4.47% with respect to real power measurements. When compared to other models, our NN model is about 3.3x better than a statistical linear regression model and 2x better than a state-of-the-art NN model.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

gpu最近已经成为移动设备上重要的计算单元,从而产生了可以运行各种并行处理应用程序的异构设备。在开发和优化此类应用时,估计功耗非常重要,因为能效已成为这些平台上优化的关键设计约束。在这项工作中,我们应用深度学习技术建立了一个预测模型,用于估计异构移动SoC上并行应用的功耗。我们的模型是一个人工神经网络(NN),使用CPU和GPU硬件性能计数器以及测量的功率数据进行训练。使用一组图形OpenGL工作负载以及OpenCL计算基准收集的数据对模型进行训练和评估。我们的评估表明,我们的模型可以获得准确的功率估计,相对于实际功率测量的平均相对误差为4.47%。与其他模型相比,我们的神经网络模型比统计线性回归模型好3.3倍,比最先进的神经网络模型好2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Counters based Power Modeling of Mobile GPUs using Deep Learning
GPUs have recently become important computational units on mobile devices, resulting in heterogeneous devices that can run a variety of parallel processing applications. While developing and optimizing such applications, estimating power consumption is of immense importance as energy efficiency has become the key design constraint to optimize for on these platforms. In this work, we apply deep learning techniques in building a predictive model for estimating power consumption of parallel applications on a heterogeneous mobile SoC. Our model is an artificial neural network (NN) trained using CPU and GPU hardware performance counters along with measured power data. The model is trained and evaluated with data collected using a set of graphics OpenGL workloads as well as OpenCL compute benchmarks. Our evaluations show that our model can achieve accurate power estimates with a mean relative error of 4.47% with respect to real power measurements. When compared to other models, our NN model is about 3.3x better than a statistical linear regression model and 2x better than a state-of-the-art NN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信