基于集成深度强化学习的DER电压控制

James Obert, R. Trevizan, A. Chavez
{"title":"基于集成深度强化学习的DER电压控制","authors":"James Obert, R. Trevizan, A. Chavez","doi":"10.1109/AI4I54798.2022.00021","DOIUrl":null,"url":null,"abstract":"To meet the challenges oflow-carbon power generation, distributed energy resources (DERs) such as solar and wind power generators are now widely integrated into the power grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic, model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble. Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning\",\"authors\":\"James Obert, R. Trevizan, A. Chavez\",\"doi\":\"10.1109/AI4I54798.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the challenges oflow-carbon power generation, distributed energy resources (DERs) such as solar and wind power generators are now widely integrated into the power grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic, model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble. Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.\",\"PeriodicalId\":345427,\"journal\":{\"name\":\"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I54798.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了应对低碳发电的挑战,分布式能源(DERs),如太阳能和风能发电机,现在被广泛地集成到电网中。由于分布式电源的自治特性,确保各个电源输出电压的适当调节对电网运营商提出了技术挑战。随机、无模型电压调节方法,如深度强化学习(DRL)已被证明在DER输出电压的调节中是有效的;然而,在一个大的状态空间中使用DRL来推导最优电压控制策略具有很大的计算时间复杂度。在本文中,我们举例说明了一种计算效率的方法来推导一个最优电压控制策略使用并行DRL集成。此外,我们还说明了当网络对手引入随机噪声时控制集成的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning
To meet the challenges oflow-carbon power generation, distributed energy resources (DERs) such as solar and wind power generators are now widely integrated into the power grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic, model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble. Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信