GeoSocialBound:一个使用空间文本信息估计社会POI边界的有效框架

Dung D. Vu, Hien To, Won-Yong Shin, C. Shahabi
{"title":"GeoSocialBound:一个使用空间文本信息估计社会POI边界的有效框架","authors":"Dung D. Vu, Hien To, Won-Yong Shin, C. Shahabi","doi":"10.1145/2948649.2948652","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel framework for estimating social point-of-interest (POI) boundaries, also termed GeoSocialBound, utilizing spatio--textual information based on geo-tagged tweets. We first start by defining a social POI boundary as one small-scale cluster containing its POI center, geographically formed with a convex polygon. Motivated by an insightful observation with regard to estimation accuracy, we formulate a constrained optimization problem, in which we are interested in finding the radius of a circle such that a newly defined objective function is maximized. To solve this problem, we introduce an efficient optimal estimation algorithm whose runtime complexity is linear in the number of geo-tags in a dataset. In addition, we empirically evaluate the estimation performance of our GeoSocialBound algorithm for various environments and validate the complexity analysis. As a result, vital information on how to obtain real-world GeoSocialBounds with a high degree of accuracy is provided.","PeriodicalId":336205,"journal":{"name":"Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"GeoSocialBound: an efficient framework for estimating social POI boundaries using spatio--textual information\",\"authors\":\"Dung D. Vu, Hien To, Won-Yong Shin, C. Shahabi\",\"doi\":\"10.1145/2948649.2948652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel framework for estimating social point-of-interest (POI) boundaries, also termed GeoSocialBound, utilizing spatio--textual information based on geo-tagged tweets. We first start by defining a social POI boundary as one small-scale cluster containing its POI center, geographically formed with a convex polygon. Motivated by an insightful observation with regard to estimation accuracy, we formulate a constrained optimization problem, in which we are interested in finding the radius of a circle such that a newly defined objective function is maximized. To solve this problem, we introduce an efficient optimal estimation algorithm whose runtime complexity is linear in the number of geo-tags in a dataset. In addition, we empirically evaluate the estimation performance of our GeoSocialBound algorithm for various environments and validate the complexity analysis. As a result, vital information on how to obtain real-world GeoSocialBounds with a high degree of accuracy is provided.\",\"PeriodicalId\":336205,\"journal\":{\"name\":\"Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2948649.2948652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948649.2948652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们提出了一个新的框架来估计社会兴趣点(POI)边界,也称为GeoSocialBound,利用基于地理标记的推文的空间文本信息。我们首先将社会POI边界定义为一个包含其POI中心的小规模集群,在地理上由凸多边形形成。出于对估计精度的深刻观察,我们提出了一个约束优化问题,其中我们感兴趣的是找到一个圆的半径,从而使新定义的目标函数最大化。为了解决这一问题,我们引入了一种高效的最优估计算法,该算法的运行复杂度与数据集中地理标签的数量呈线性关系。此外,我们还通过经验评估了GeoSocialBound算法在各种环境下的估计性能,并验证了复杂性分析。因此,提供了关于如何以高精度获得真实世界GeoSocialBounds的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GeoSocialBound: an efficient framework for estimating social POI boundaries using spatio--textual information
In this paper, we present a novel framework for estimating social point-of-interest (POI) boundaries, also termed GeoSocialBound, utilizing spatio--textual information based on geo-tagged tweets. We first start by defining a social POI boundary as one small-scale cluster containing its POI center, geographically formed with a convex polygon. Motivated by an insightful observation with regard to estimation accuracy, we formulate a constrained optimization problem, in which we are interested in finding the radius of a circle such that a newly defined objective function is maximized. To solve this problem, we introduce an efficient optimal estimation algorithm whose runtime complexity is linear in the number of geo-tags in a dataset. In addition, we empirically evaluate the estimation performance of our GeoSocialBound algorithm for various environments and validate the complexity analysis. As a result, vital information on how to obtain real-world GeoSocialBounds with a high degree of accuracy is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信