跨物种基因调控分析的三向聚类方法

D. Dede, H. Oğul
{"title":"跨物种基因调控分析的三向聚类方法","authors":"D. Dede, H. Oğul","doi":"10.1109/INISTA.2013.6577644","DOIUrl":null,"url":null,"abstract":"Many different biological data mining methods have been used in gene expression data analysis. A common method is two-way clustering, also called biclustering, which is used to identify the gene groups that behave similarly under a subset of experimental conditions. This paper introduces a novel approach called three-way clustering (TriWClustering) for cross-species gene regulation analysis, to mine coherent clusters named triclusters in three-dimensional (gene-condition-organism) gene expression datasets. The developed method has been applied to three different gene expression data obtained from NCBI's GEO data collection. Biological and statistical significance of the results are evaluated using Gene Ontology term enrichment analysis and Dunn index (DI) metric, respectively. The experimental results indicate that TriWClustering can find significant triclusters and promote a useful tool for cross species gene regulation analysis.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A three-way clustering approach to cross-species gene regulation analysis\",\"authors\":\"D. Dede, H. Oğul\",\"doi\":\"10.1109/INISTA.2013.6577644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many different biological data mining methods have been used in gene expression data analysis. A common method is two-way clustering, also called biclustering, which is used to identify the gene groups that behave similarly under a subset of experimental conditions. This paper introduces a novel approach called three-way clustering (TriWClustering) for cross-species gene regulation analysis, to mine coherent clusters named triclusters in three-dimensional (gene-condition-organism) gene expression datasets. The developed method has been applied to three different gene expression data obtained from NCBI's GEO data collection. Biological and statistical significance of the results are evaluated using Gene Ontology term enrichment analysis and Dunn index (DI) metric, respectively. The experimental results indicate that TriWClustering can find significant triclusters and promote a useful tool for cross species gene regulation analysis.\",\"PeriodicalId\":301458,\"journal\":{\"name\":\"2013 IEEE INISTA\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE INISTA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2013.6577644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

许多不同的生物数据挖掘方法已被用于基因表达数据分析。一种常用的方法是双向聚类,也称为双聚类,用于识别在实验条件的子集下表现相似的基因组。本文介绍了一种用于跨物种基因调控分析的新方法,称为三向聚类(TriWClustering),以挖掘三维(基因-条件-生物)基因表达数据集中命名为三向聚类的连贯聚类。该方法已应用于NCBI GEO数据收集中获得的三种不同的基因表达数据。利用Gene Ontology术语富集分析和Dunn指数(DI)度量分别评价结果的生物学和统计学意义。实验结果表明,TriWClustering可以发现显著的三聚类,为跨物种基因调控分析提供了一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A three-way clustering approach to cross-species gene regulation analysis
Many different biological data mining methods have been used in gene expression data analysis. A common method is two-way clustering, also called biclustering, which is used to identify the gene groups that behave similarly under a subset of experimental conditions. This paper introduces a novel approach called three-way clustering (TriWClustering) for cross-species gene regulation analysis, to mine coherent clusters named triclusters in three-dimensional (gene-condition-organism) gene expression datasets. The developed method has been applied to three different gene expression data obtained from NCBI's GEO data collection. Biological and statistical significance of the results are evaluated using Gene Ontology term enrichment analysis and Dunn index (DI) metric, respectively. The experimental results indicate that TriWClustering can find significant triclusters and promote a useful tool for cross species gene regulation analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信