E. A. Ríssola, Diana Ramírez-Cifuentes, Ana Freire, F. Crestani
{"title":"社交媒体上的自杀风险评估:USI-UPF在CLPsych 2019共享任务上","authors":"E. A. Ríssola, Diana Ramírez-Cifuentes, Ana Freire, F. Crestani","doi":"10.18653/v1/W19-3021","DOIUrl":null,"url":null,"abstract":"This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.","PeriodicalId":201097,"journal":{"name":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task\",\"authors\":\"E. A. Ríssola, Diana Ramírez-Cifuentes, Ana Freire, F. Crestani\",\"doi\":\"10.18653/v1/W19-3021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.\",\"PeriodicalId\":201097,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task
This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.