社交媒体上的自杀风险评估:USI-UPF在CLPsych 2019共享任务上

E. A. Ríssola, Diana Ramírez-Cifuentes, Ana Freire, F. Crestani
{"title":"社交媒体上的自杀风险评估:USI-UPF在CLPsych 2019共享任务上","authors":"E. A. Ríssola, Diana Ramírez-Cifuentes, Ana Freire, F. Crestani","doi":"10.18653/v1/W19-3021","DOIUrl":null,"url":null,"abstract":"This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.","PeriodicalId":201097,"journal":{"name":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task\",\"authors\":\"E. A. Ríssola, Diana Ramírez-Cifuentes, Ana Freire, F. Crestani\",\"doi\":\"10.18653/v1/W19-3021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.\",\"PeriodicalId\":201097,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了USI-UPF团队参与2019年计算语言学与临床心理学研讨会(CLPsych2019)的共同任务。该研究的目的是评估社交媒体用户的自杀风险程度,该数据集包含他们的帖子。使用自动化方法进行适当的自杀风险评估,可以帮助专家发现有风险的人,并最终有助于预防自杀。我们提出了一套机器学习模型,其特征基于词汇、词嵌入、词级n-图和从用户帖子中提取的统计数据。结果表明,结合基于词典的特征、选定的n-gram集和统计度量,获得了最有效的任务模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task
This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信