基于Elman递归神经网络的电力短期负荷预测

S. N., Anup Yelamali, K. Byahatti
{"title":"基于Elman递归神经网络的电力短期负荷预测","authors":"S. N., Anup Yelamali, K. Byahatti","doi":"10.1109/ARTCOM.2010.44","DOIUrl":null,"url":null,"abstract":"The proposed work aimed to forecasting the load by using Artificial Neural Networks (ANN). Short term load forecasting plays an important role for the planning, economic and reliable operation of power systems. Therefore, many statistical methods have b","PeriodicalId":398854,"journal":{"name":"2010 International Conference on Advances in Recent Technologies in Communication and Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Electricity Short Term Load Forecasting Using Elman Recurrent Neural Network\",\"authors\":\"S. N., Anup Yelamali, K. Byahatti\",\"doi\":\"10.1109/ARTCOM.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed work aimed to forecasting the load by using Artificial Neural Networks (ANN). Short term load forecasting plays an important role for the planning, economic and reliable operation of power systems. Therefore, many statistical methods have b\",\"PeriodicalId\":398854,\"journal\":{\"name\":\"2010 International Conference on Advances in Recent Technologies in Communication and Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Advances in Recent Technologies in Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARTCOM.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Advances in Recent Technologies in Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARTCOM.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出的工作旨在利用人工神经网络(ANN)预测电力负荷。短期负荷预测对电力系统的规划、经济、可靠运行具有重要作用。因此,很多统计方法都有b
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity Short Term Load Forecasting Using Elman Recurrent Neural Network
The proposed work aimed to forecasting the load by using Artificial Neural Networks (ANN). Short term load forecasting plays an important role for the planning, economic and reliable operation of power systems. Therefore, many statistical methods have b
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信