二阶对角递归神经网络在非线性系统辨识中的应用

Yan Shen, Xianlong Ju, C. Liu
{"title":"二阶对角递归神经网络在非线性系统辨识中的应用","authors":"Yan Shen, Xianlong Ju, C. Liu","doi":"10.1109/WISM.2010.10","DOIUrl":null,"url":null,"abstract":"In this paper, a kind of second order diagonal recurrent neural network (SDRNN) identification method based on dynamic back propagation(DBP) algorithm with momentum term is proposed. This identification method overcomes the disadvantages such as slow convergent speed and trapping the local minimum. The SDRNN is similar as diagonal recurrent neural network(DRNN) in the structure, two tapped delays are used in the hidden neurons of DRNN, the simple structure of the DRNN is retained, the identification of a nonlinear system is realized with SDRNN. Serial-parallel identification architecture is applied in the modeling. Simulation results show that improved algorithm is effective with advantages the fast convergence, higher identification accuracy, higher adaptability and robustness in system identification. It is suitable for real-time identification of dynamic system.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Second Order Diagonal Recurrent Neural Network in Nonlinear System Identification\",\"authors\":\"Yan Shen, Xianlong Ju, C. Liu\",\"doi\":\"10.1109/WISM.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a kind of second order diagonal recurrent neural network (SDRNN) identification method based on dynamic back propagation(DBP) algorithm with momentum term is proposed. This identification method overcomes the disadvantages such as slow convergent speed and trapping the local minimum. The SDRNN is similar as diagonal recurrent neural network(DRNN) in the structure, two tapped delays are used in the hidden neurons of DRNN, the simple structure of the DRNN is retained, the identification of a nonlinear system is realized with SDRNN. Serial-parallel identification architecture is applied in the modeling. Simulation results show that improved algorithm is effective with advantages the fast convergence, higher identification accuracy, higher adaptability and robustness in system identification. It is suitable for real-time identification of dynamic system.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于动量项动态反向传播(DBP)算法的二阶对角递归神经网络(SDRNN)辨识方法。这种识别方法克服了收敛速度慢和捕获局部最小值的缺点。SDRNN在结构上与对角递归神经网络(DRNN)相似,在隐藏神经元中使用两个抽头延迟,保留了DRNN的简单结构,实现了对非线性系统的识别。建模采用串并联识别体系结构。仿真结果表明,改进算法具有收敛速度快、识别精度高、适应性强和鲁棒性好的优点。它适用于动态系统的实时辨识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Second Order Diagonal Recurrent Neural Network in Nonlinear System Identification
In this paper, a kind of second order diagonal recurrent neural network (SDRNN) identification method based on dynamic back propagation(DBP) algorithm with momentum term is proposed. This identification method overcomes the disadvantages such as slow convergent speed and trapping the local minimum. The SDRNN is similar as diagonal recurrent neural network(DRNN) in the structure, two tapped delays are used in the hidden neurons of DRNN, the simple structure of the DRNN is retained, the identification of a nonlinear system is realized with SDRNN. Serial-parallel identification architecture is applied in the modeling. Simulation results show that improved algorithm is effective with advantages the fast convergence, higher identification accuracy, higher adaptability and robustness in system identification. It is suitable for real-time identification of dynamic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信