路径图与完全图词典积的生成树填充

I. S. Jr.
{"title":"路径图与完全图词典积的生成树填充","authors":"I. S. Jr.","doi":"10.9734/arjom/2023/v19i9710","DOIUrl":null,"url":null,"abstract":"For any graphs G of order n, the spanning tree packing number, denoted by, of a graph G is the maximum number of edge disjoint spanning tree contained in G. In this study determine the spanning packing number of lexicographic product of graphs resulting from two path graphs.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning Tree Packing of Lexicographic Product of Graphs Resulting from Path and Complete Graphs\",\"authors\":\"I. S. Jr.\",\"doi\":\"10.9734/arjom/2023/v19i9710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any graphs G of order n, the spanning tree packing number, denoted by, of a graph G is the maximum number of edge disjoint spanning tree contained in G. In this study determine the spanning packing number of lexicographic product of graphs resulting from two path graphs.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意n阶图G,图G的生成树包装箱数表示为G中包含的最大边不相交生成树数。本文确定了由两个路径图生成的图的字典积的生成包装箱数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spanning Tree Packing of Lexicographic Product of Graphs Resulting from Path and Complete Graphs
For any graphs G of order n, the spanning tree packing number, denoted by, of a graph G is the maximum number of edge disjoint spanning tree contained in G. In this study determine the spanning packing number of lexicographic product of graphs resulting from two path graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信