{"title":"路径图与完全图词典积的生成树填充","authors":"I. S. Jr.","doi":"10.9734/arjom/2023/v19i9710","DOIUrl":null,"url":null,"abstract":"For any graphs G of order n, the spanning tree packing number, denoted by, of a graph G is the maximum number of edge disjoint spanning tree contained in G. In this study determine the spanning packing number of lexicographic product of graphs resulting from two path graphs.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning Tree Packing of Lexicographic Product of Graphs Resulting from Path and Complete Graphs\",\"authors\":\"I. S. Jr.\",\"doi\":\"10.9734/arjom/2023/v19i9710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any graphs G of order n, the spanning tree packing number, denoted by, of a graph G is the maximum number of edge disjoint spanning tree contained in G. In this study determine the spanning packing number of lexicographic product of graphs resulting from two path graphs.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spanning Tree Packing of Lexicographic Product of Graphs Resulting from Path and Complete Graphs
For any graphs G of order n, the spanning tree packing number, denoted by, of a graph G is the maximum number of edge disjoint spanning tree contained in G. In this study determine the spanning packing number of lexicographic product of graphs resulting from two path graphs.