{"title":"锰助剂铑催化剂的透射电镜研究","authors":"M. Merritt, Y. Zhao, R. Klie","doi":"10.5210/JUR.V4I1.7480","DOIUrl":null,"url":null,"abstract":"The focus of this research is on studying the effects of a manganese promoter on rhodium particles for the purposes of ethanol catalysation from syngas. Through TEM imaging, the particle size has been studied both before and after reduction with and without a manganese promoter. For pure rhodium on silica, the average particle size before reduction was 3.1 ± 0.8 nm and 3.1 ± 0.8 nm after reduction. For rhodium with a manganese promoter on silica, the average particle size before reduction was 2.3 ± 0.5 nm and 2.4 ± 0.7 nm after reduction. These results point to a clear effect of manganese on the particle sizes of rhodium, but an insufficient effect on particle size to fully explain all effects of manganese promotion on rhodium catalysts. Further research will be focusing on using a JEOL-2010F to conduct electron energy loss spectroscopy (EELS) and Z-contrast imaging structural studies.","PeriodicalId":426348,"journal":{"name":"The Journal of Undergraduate Research at the University of Illinois at Chicago","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TEM Study of Rhodium Catalysts with Manganese Promoter\",\"authors\":\"M. Merritt, Y. Zhao, R. Klie\",\"doi\":\"10.5210/JUR.V4I1.7480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this research is on studying the effects of a manganese promoter on rhodium particles for the purposes of ethanol catalysation from syngas. Through TEM imaging, the particle size has been studied both before and after reduction with and without a manganese promoter. For pure rhodium on silica, the average particle size before reduction was 3.1 ± 0.8 nm and 3.1 ± 0.8 nm after reduction. For rhodium with a manganese promoter on silica, the average particle size before reduction was 2.3 ± 0.5 nm and 2.4 ± 0.7 nm after reduction. These results point to a clear effect of manganese on the particle sizes of rhodium, but an insufficient effect on particle size to fully explain all effects of manganese promotion on rhodium catalysts. Further research will be focusing on using a JEOL-2010F to conduct electron energy loss spectroscopy (EELS) and Z-contrast imaging structural studies.\",\"PeriodicalId\":426348,\"journal\":{\"name\":\"The Journal of Undergraduate Research at the University of Illinois at Chicago\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Undergraduate Research at the University of Illinois at Chicago\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5210/JUR.V4I1.7480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Undergraduate Research at the University of Illinois at Chicago","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/JUR.V4I1.7480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TEM Study of Rhodium Catalysts with Manganese Promoter
The focus of this research is on studying the effects of a manganese promoter on rhodium particles for the purposes of ethanol catalysation from syngas. Through TEM imaging, the particle size has been studied both before and after reduction with and without a manganese promoter. For pure rhodium on silica, the average particle size before reduction was 3.1 ± 0.8 nm and 3.1 ± 0.8 nm after reduction. For rhodium with a manganese promoter on silica, the average particle size before reduction was 2.3 ± 0.5 nm and 2.4 ± 0.7 nm after reduction. These results point to a clear effect of manganese on the particle sizes of rhodium, but an insufficient effect on particle size to fully explain all effects of manganese promotion on rhodium catalysts. Further research will be focusing on using a JEOL-2010F to conduct electron energy loss spectroscopy (EELS) and Z-contrast imaging structural studies.