软土上履带车辆沉降力和破裂力的估计

K. Amudha, K. Reshma, N. R. Ramesh, C. R. Deepak, G. Ramadass, M. Atmanand
{"title":"软土上履带车辆沉降力和破裂力的估计","authors":"K. Amudha, K. Reshma, N. R. Ramesh, C. R. Deepak, G. Ramadass, M. Atmanand","doi":"10.1109/OCEANS-TAIPEI.2014.6964444","DOIUrl":null,"url":null,"abstract":"Deep seabed polymetallic nodule mining machines have to operate in extremely soft ocean floor having soils of shear strength in the order of 1-3 kPa. The extent of sinkage and pullout force or breakout force required to lift the mining machine from the seafloor bottom needs to be evaluated for the successful operation and retrieval of the mining machine. In most of the cases the breakout force exceeds the submerged weight of object. Most of the empirical equations for estimating breakout forces are based on the bearing capacity phenomena. In the present study experimental investigations have been carried for obtaining undrained or immediate breakout forces on flat plates, plates with involute grousers and single track unit of Undercarriage unit. The magnitude of forces so obtained from the experiments has been compared to those calculated from the empirical equations. Studies on the extent of sinkage in soft sediments is critical for quantification of resistances encountered by the mining machine which influences the maneuverability of the mining machine. Experimental investigations have been carried out on flat plates, flat plates with grousers and single track of undercarriage unit as a part of sinkage studies. Sinkage has also been studied by Finite Element Methods using MohrCoulomb material model neglecting angle of internal friction angle as soils were fully cohesive and solving through explicit methods.","PeriodicalId":114739,"journal":{"name":"OCEANS 2014 - TAIPEI","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of sinkage and breakout forces for tracked vehicle for soft soils\",\"authors\":\"K. Amudha, K. Reshma, N. R. Ramesh, C. R. Deepak, G. Ramadass, M. Atmanand\",\"doi\":\"10.1109/OCEANS-TAIPEI.2014.6964444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep seabed polymetallic nodule mining machines have to operate in extremely soft ocean floor having soils of shear strength in the order of 1-3 kPa. The extent of sinkage and pullout force or breakout force required to lift the mining machine from the seafloor bottom needs to be evaluated for the successful operation and retrieval of the mining machine. In most of the cases the breakout force exceeds the submerged weight of object. Most of the empirical equations for estimating breakout forces are based on the bearing capacity phenomena. In the present study experimental investigations have been carried for obtaining undrained or immediate breakout forces on flat plates, plates with involute grousers and single track unit of Undercarriage unit. The magnitude of forces so obtained from the experiments has been compared to those calculated from the empirical equations. Studies on the extent of sinkage in soft sediments is critical for quantification of resistances encountered by the mining machine which influences the maneuverability of the mining machine. Experimental investigations have been carried out on flat plates, flat plates with grousers and single track of undercarriage unit as a part of sinkage studies. Sinkage has also been studied by Finite Element Methods using MohrCoulomb material model neglecting angle of internal friction angle as soils were fully cohesive and solving through explicit methods.\",\"PeriodicalId\":114739,\"journal\":{\"name\":\"OCEANS 2014 - TAIPEI\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2014 - TAIPEI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2014 - TAIPEI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深海多金属结核采矿机必须在极软的海底作业,土壤的抗剪强度为1-3千帕。为了矿机的成功操作和回收,需要评估下沉的程度和将矿机从海底抬起所需的拉出力或突破力。在大多数情况下,破裂力超过了物体的水下重量。大多数估算断裂力的经验方程都是基于承载能力现象。在本研究中,对平板、渐开线板和底盘单元的单轨单元进行了不排水或立即破裂力的实验研究。从实验中得到的力的大小已与经验方程计算的力的大小进行了比较。软质沉积物下沉程度的研究是量化采矿机械所遇到的阻力的关键,这些阻力影响着采矿机械的可操作性。作为下沉研究的一部分,对平板、带槽平板和底盘单元单轨进行了试验研究。采用莫尔-库仑材料模型的有限元方法研究了土体在完全黏结状态下的沉降,忽略了内摩擦角,采用显式方法求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of sinkage and breakout forces for tracked vehicle for soft soils
Deep seabed polymetallic nodule mining machines have to operate in extremely soft ocean floor having soils of shear strength in the order of 1-3 kPa. The extent of sinkage and pullout force or breakout force required to lift the mining machine from the seafloor bottom needs to be evaluated for the successful operation and retrieval of the mining machine. In most of the cases the breakout force exceeds the submerged weight of object. Most of the empirical equations for estimating breakout forces are based on the bearing capacity phenomena. In the present study experimental investigations have been carried for obtaining undrained or immediate breakout forces on flat plates, plates with involute grousers and single track unit of Undercarriage unit. The magnitude of forces so obtained from the experiments has been compared to those calculated from the empirical equations. Studies on the extent of sinkage in soft sediments is critical for quantification of resistances encountered by the mining machine which influences the maneuverability of the mining machine. Experimental investigations have been carried out on flat plates, flat plates with grousers and single track of undercarriage unit as a part of sinkage studies. Sinkage has also been studied by Finite Element Methods using MohrCoulomb material model neglecting angle of internal friction angle as soils were fully cohesive and solving through explicit methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信