信息瓶颈函数的字母大小边界

C. Hirche, A. Winter
{"title":"信息瓶颈函数的字母大小边界","authors":"C. Hirche, A. Winter","doi":"10.1109/ISIT44484.2020.9174416","DOIUrl":null,"url":null,"abstract":"The information bottleneck function gives a measure of optimal preservation of correlation between some random variable X and some side information Y while compressing X into a new random variable W with bounded remaining correlation to X. As such, the information bottleneck has found many natural applications in machine learning, coding and video compression. The main objective in order to calculate the information bottleneck is to find the optimal representation on W. This could in principle be arbitrarily complicated, but fortunately it is known that the cardinality of W can be restricted as $|\\mathcal{W}| \\leq |\\mathcal{X}| + 1$ which makes the calculation possible for finite $|\\mathcal{X}|$. Now, for many practical applications, e.g. in machine learning, X represents a potentially very large data space, while Y is from a comparably small set of labels. This raises the question whether the known cardinality bound can be improved in such situations. We show that the information bottleneck function can always be approximated up to an error $\\delta (\\varepsilon,\\;|\\mathcal{Y}|)$ with a cardinality $|\\mathcal{W}| \\leq f( \\in,\\;|\\mathcal{Y}|)$, for explicitly given functions δ and f of an approximation parameter ϵ > 0 and the cardinality of $\\mathcal{Y}$.Finally, we generalize the known cardinality boundsY to the case were some of the random variables represent quantum information.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Alphabet-Size Bound for the Information Bottleneck Function\",\"authors\":\"C. Hirche, A. Winter\",\"doi\":\"10.1109/ISIT44484.2020.9174416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information bottleneck function gives a measure of optimal preservation of correlation between some random variable X and some side information Y while compressing X into a new random variable W with bounded remaining correlation to X. As such, the information bottleneck has found many natural applications in machine learning, coding and video compression. The main objective in order to calculate the information bottleneck is to find the optimal representation on W. This could in principle be arbitrarily complicated, but fortunately it is known that the cardinality of W can be restricted as $|\\\\mathcal{W}| \\\\leq |\\\\mathcal{X}| + 1$ which makes the calculation possible for finite $|\\\\mathcal{X}|$. Now, for many practical applications, e.g. in machine learning, X represents a potentially very large data space, while Y is from a comparably small set of labels. This raises the question whether the known cardinality bound can be improved in such situations. We show that the information bottleneck function can always be approximated up to an error $\\\\delta (\\\\varepsilon,\\\\;|\\\\mathcal{Y}|)$ with a cardinality $|\\\\mathcal{W}| \\\\leq f( \\\\in,\\\\;|\\\\mathcal{Y}|)$, for explicitly given functions δ and f of an approximation parameter ϵ > 0 and the cardinality of $\\\\mathcal{Y}$.Finally, we generalize the known cardinality boundsY to the case were some of the random variables represent quantum information.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

信息瓶颈函数给出了一些随机变量X和一些侧信息Y之间的相关性的最佳保存措施,同时将X压缩成一个新的随机变量W,与X保持有界的相关性。因此,信息瓶颈在机器学习,编码和视频压缩中发现了许多自然的应用。计算信息瓶颈的主要目标是找到W上的最佳表示。原则上,这可能是任意复杂的,但幸运的是,已知W的基数可以被限制为$|\mathcal{W}| \leq |\mathcal{X}| + 1$,这使得计算可能是有限的$|\mathcal{X}|$。现在,对于许多实际应用,例如在机器学习中,X代表一个潜在的非常大的数据空间,而Y来自一个相对较小的标签集。这就提出了一个问题,在这种情况下,已知的基数边界是否可以得到改进。我们表明,对于显式给定函数δ和f的近似参数λ > 0和$\mathcal{Y}$的基数,信息瓶颈函数总是可以用基数$|\mathcal{W}| \leq f( \in,\;|\mathcal{Y}|)$逼近到误差$\delta (\varepsilon,\;|\mathcal{Y}|)$。最后,我们将已知的基数boundsY推广到一些随机变量表示量子信息的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Alphabet-Size Bound for the Information Bottleneck Function
The information bottleneck function gives a measure of optimal preservation of correlation between some random variable X and some side information Y while compressing X into a new random variable W with bounded remaining correlation to X. As such, the information bottleneck has found many natural applications in machine learning, coding and video compression. The main objective in order to calculate the information bottleneck is to find the optimal representation on W. This could in principle be arbitrarily complicated, but fortunately it is known that the cardinality of W can be restricted as $|\mathcal{W}| \leq |\mathcal{X}| + 1$ which makes the calculation possible for finite $|\mathcal{X}|$. Now, for many practical applications, e.g. in machine learning, X represents a potentially very large data space, while Y is from a comparably small set of labels. This raises the question whether the known cardinality bound can be improved in such situations. We show that the information bottleneck function can always be approximated up to an error $\delta (\varepsilon,\;|\mathcal{Y}|)$ with a cardinality $|\mathcal{W}| \leq f( \in,\;|\mathcal{Y}|)$, for explicitly given functions δ and f of an approximation parameter ϵ > 0 and the cardinality of $\mathcal{Y}$.Finally, we generalize the known cardinality boundsY to the case were some of the random variables represent quantum information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信