{"title":"图形处理单元下PTS技术的计算复杂度分析","authors":"S. Yadav, P. Pradhan, Sarat Kumar Parra","doi":"10.1109/C3IT.2015.7060162","DOIUrl":null,"url":null,"abstract":"Peak-to-Average Power Ratio (PAPR) reduction is a important signal processing aspect of Orthogonal Frequency Division Multiplexing (OFDM). Minimization of PAPR can be achieved efficiently using PTS Technique. The main drawback of PTS lies in its computational complexity due to large order of multiple IFFT and phase factor computation. Typically simulation to tune 4 sub-blocks with 4 phase factors in PTS is achievable using standard computing hardware. In this paper we present performance comparison of PTS technique using different number of sub-blocks (V=2, 4, 6 and 8) with different phase factors (W=2, 4 and 8) under Central Processing Unit (CPU) and Graphics Processing Unit (GPU) environments. The performance gain of GPU over CPU in terms of speedup is presented and the computational complexity involved is analyzed. The CPU is approx 3.7×, 7×, and 9× faster than CPU in case of 2, 4, and 8 phase factors respectively.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational complexity analysis of PTS technique under graphics processing unit\",\"authors\":\"S. Yadav, P. Pradhan, Sarat Kumar Parra\",\"doi\":\"10.1109/C3IT.2015.7060162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peak-to-Average Power Ratio (PAPR) reduction is a important signal processing aspect of Orthogonal Frequency Division Multiplexing (OFDM). Minimization of PAPR can be achieved efficiently using PTS Technique. The main drawback of PTS lies in its computational complexity due to large order of multiple IFFT and phase factor computation. Typically simulation to tune 4 sub-blocks with 4 phase factors in PTS is achievable using standard computing hardware. In this paper we present performance comparison of PTS technique using different number of sub-blocks (V=2, 4, 6 and 8) with different phase factors (W=2, 4 and 8) under Central Processing Unit (CPU) and Graphics Processing Unit (GPU) environments. The performance gain of GPU over CPU in terms of speedup is presented and the computational complexity involved is analyzed. The CPU is approx 3.7×, 7×, and 9× faster than CPU in case of 2, 4, and 8 phase factors respectively.\",\"PeriodicalId\":402311,\"journal\":{\"name\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C3IT.2015.7060162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational complexity analysis of PTS technique under graphics processing unit
Peak-to-Average Power Ratio (PAPR) reduction is a important signal processing aspect of Orthogonal Frequency Division Multiplexing (OFDM). Minimization of PAPR can be achieved efficiently using PTS Technique. The main drawback of PTS lies in its computational complexity due to large order of multiple IFFT and phase factor computation. Typically simulation to tune 4 sub-blocks with 4 phase factors in PTS is achievable using standard computing hardware. In this paper we present performance comparison of PTS technique using different number of sub-blocks (V=2, 4, 6 and 8) with different phase factors (W=2, 4 and 8) under Central Processing Unit (CPU) and Graphics Processing Unit (GPU) environments. The performance gain of GPU over CPU in terms of speedup is presented and the computational complexity involved is analyzed. The CPU is approx 3.7×, 7×, and 9× faster than CPU in case of 2, 4, and 8 phase factors respectively.