基于变换的图像去噪研究进展

Nidhi Soni, K. Kirar
{"title":"基于变换的图像去噪研究进展","authors":"Nidhi Soni, K. Kirar","doi":"10.1109/RISE.2017.8378147","DOIUrl":null,"url":null,"abstract":"The challenge to remove noise from original image still exists. Over the past two decades, different kinds of noise reduction techniques have been developed. This paper reviews the transform based denoising techniques and performs their comparative study. Here we put results of different approaches including general ridgelets and curvelets, Empirical Mode Decomposition and Empirical ridgelets and curvelets. A quantitative measure of comparisons is presented in terms of PSNR.","PeriodicalId":166244,"journal":{"name":"2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transform based image denoising: A review\",\"authors\":\"Nidhi Soni, K. Kirar\",\"doi\":\"10.1109/RISE.2017.8378147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge to remove noise from original image still exists. Over the past two decades, different kinds of noise reduction techniques have been developed. This paper reviews the transform based denoising techniques and performs their comparative study. Here we put results of different approaches including general ridgelets and curvelets, Empirical Mode Decomposition and Empirical ridgelets and curvelets. A quantitative measure of comparisons is presented in terms of PSNR.\",\"PeriodicalId\":166244,\"journal\":{\"name\":\"2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RISE.2017.8378147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RISE.2017.8378147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从原始图像中去除噪声的挑战仍然存在。在过去的二十年里,各种各样的降噪技术已经被开发出来。本文综述了基于变换的去噪技术,并对其进行了比较研究。在这里,我们给出了不同方法的结果,包括一般脊波和曲线、经验模态分解和经验脊波和曲线。在PSNR方面提出了比较的定量度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transform based image denoising: A review
The challenge to remove noise from original image still exists. Over the past two decades, different kinds of noise reduction techniques have been developed. This paper reviews the transform based denoising techniques and performs their comparative study. Here we put results of different approaches including general ridgelets and curvelets, Empirical Mode Decomposition and Empirical ridgelets and curvelets. A quantitative measure of comparisons is presented in terms of PSNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信