优化SPARQL-to-SQL重写

Jörg Unbehauen, Claus Stadler, S. Auer
{"title":"优化SPARQL-to-SQL重写","authors":"Jörg Unbehauen, Claus Stadler, S. Auer","doi":"10.1145/2539150.2539247","DOIUrl":null,"url":null,"abstract":"The vast majority of the structured data of our age is stored in relational databases. In order to link and integrate this data on the Web, it is of paramount importance to map relational data to the RDF data model and make Linked Data interfaces to the data available. We can distinguish two main approaches: First, the database can be transformed into RDF row by row and the resulting knowledge base can be exposed using a triple store. Second, an RDB2RDF mapper performs SPARQL-to-SQL rewriting and thus exposes a virtual RDF graph based on the relational database. The key challenge of such a SPARQL-to-SQL rewriting is to create a SQL query which can be efficiently executed by the optimizer of the underlying relational database. In this article we discuss and evaluate the impact of different optimizations on query execution time using SparqlMap, a R2RML compliant SPARQL-to-SQL rewriter and compare the performance with state-of-the-art systems.","PeriodicalId":424918,"journal":{"name":"International Conference on Information Integration and Web-based Applications & Services","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimizing SPARQL-to-SQL Rewriting\",\"authors\":\"Jörg Unbehauen, Claus Stadler, S. Auer\",\"doi\":\"10.1145/2539150.2539247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast majority of the structured data of our age is stored in relational databases. In order to link and integrate this data on the Web, it is of paramount importance to map relational data to the RDF data model and make Linked Data interfaces to the data available. We can distinguish two main approaches: First, the database can be transformed into RDF row by row and the resulting knowledge base can be exposed using a triple store. Second, an RDB2RDF mapper performs SPARQL-to-SQL rewriting and thus exposes a virtual RDF graph based on the relational database. The key challenge of such a SPARQL-to-SQL rewriting is to create a SQL query which can be efficiently executed by the optimizer of the underlying relational database. In this article we discuss and evaluate the impact of different optimizations on query execution time using SparqlMap, a R2RML compliant SPARQL-to-SQL rewriter and compare the performance with state-of-the-art systems.\",\"PeriodicalId\":424918,\"journal\":{\"name\":\"International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2539150.2539247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2539150.2539247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们这个时代的绝大多数结构化数据都存储在关系数据库中。为了在Web上链接和集成这些数据,将关系数据映射到RDF数据模型并使数据的关联数据接口可用是至关重要的。我们可以区分两种主要方法:第一,可以将数据库逐行转换为RDF,并且可以使用三重存储公开结果知识库。其次,RDB2RDF映射器执行SPARQL-to-SQL重写,从而公开基于关系数据库的虚拟RDF图。这种SPARQL-to-SQL重写的关键挑战是创建一个可以由底层关系数据库的优化器有效执行的SQL查询。在本文中,我们将使用SparqlMap(一个兼容R2RML的SPARQL-to-SQL重写器)讨论和评估不同优化对查询执行时间的影响,并将性能与最先进的系统进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing SPARQL-to-SQL Rewriting
The vast majority of the structured data of our age is stored in relational databases. In order to link and integrate this data on the Web, it is of paramount importance to map relational data to the RDF data model and make Linked Data interfaces to the data available. We can distinguish two main approaches: First, the database can be transformed into RDF row by row and the resulting knowledge base can be exposed using a triple store. Second, an RDB2RDF mapper performs SPARQL-to-SQL rewriting and thus exposes a virtual RDF graph based on the relational database. The key challenge of such a SPARQL-to-SQL rewriting is to create a SQL query which can be efficiently executed by the optimizer of the underlying relational database. In this article we discuss and evaluate the impact of different optimizations on query execution time using SparqlMap, a R2RML compliant SPARQL-to-SQL rewriter and compare the performance with state-of-the-art systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信