建筑空调系统随机定性模型参数自动整定

T. Yamasaki, M. Yumoto, T. Ohkawa, N. Komoda, F. Miyasaka
{"title":"建筑空调系统随机定性模型参数自动整定","authors":"T. Yamasaki, M. Yumoto, T. Ohkawa, N. Komoda, F. Miyasaka","doi":"10.1109/INES.1997.632454","DOIUrl":null,"url":null,"abstract":"We have proposed the stochastic qualitative simulation which can derive approximate behavior from a simple qualitative model of a target. In this method, the model must be constructed with numerous stochastic parameters. The parameter tuning process is the most difficult element of model construction. This paper outlines an automatic parameter turning by means of the steepest ascent based method. This method was used in order to generate a model of a real air conditioning system in a building.","PeriodicalId":161975,"journal":{"name":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic parameter tuning of stochastic qualitative model of building air conditioning systems\",\"authors\":\"T. Yamasaki, M. Yumoto, T. Ohkawa, N. Komoda, F. Miyasaka\",\"doi\":\"10.1109/INES.1997.632454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed the stochastic qualitative simulation which can derive approximate behavior from a simple qualitative model of a target. In this method, the model must be constructed with numerous stochastic parameters. The parameter tuning process is the most difficult element of model construction. This paper outlines an automatic parameter turning by means of the steepest ascent based method. This method was used in order to generate a model of a real air conditioning system in a building.\",\"PeriodicalId\":161975,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.1997.632454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.1997.632454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种随机定性模拟方法,它可以从目标的简单定性模型推导出目标的近似行为。在这种方法中,必须用大量的随机参数来构建模型。参数整定过程是模型构建中最困难的环节。本文提出了一种基于最陡爬坡法的自动参数转弯方法。利用该方法对某建筑的空调系统进行了建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic parameter tuning of stochastic qualitative model of building air conditioning systems
We have proposed the stochastic qualitative simulation which can derive approximate behavior from a simple qualitative model of a target. In this method, the model must be constructed with numerous stochastic parameters. The parameter tuning process is the most difficult element of model construction. This paper outlines an automatic parameter turning by means of the steepest ascent based method. This method was used in order to generate a model of a real air conditioning system in a building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信