SAS非线性模型还是人工高阶神经网络非线性模型?

{"title":"SAS非线性模型还是人工高阶神经网络非线性模型?","authors":"","doi":"10.4018/978-1-7998-3563-9.ch004","DOIUrl":null,"url":null,"abstract":"This chapter delivers general format of higher order neural networks (HONNs) for nonlinear data analysis and six different HONN models. Then, this chapter mathematically proves that HONN models could converge and have mean squared errors close to zero. Moreover, this chapter illustrates the learning algorithm with update formulas. HONN models are compared with SAS nonlinear (NLIN) models, and results show that HONN models are 3 to 12% better than SAS nonlinear models. Finally, this chapter shows how to use HONN models to find the best model, order, and coefficients without writing the regression expression, declaring parameter names, and supplying initial parameter values.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAS Nonlinear Models or Artificial Higher Order Neural Network Nonlinear Models?\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-3563-9.ch004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter delivers general format of higher order neural networks (HONNs) for nonlinear data analysis and six different HONN models. Then, this chapter mathematically proves that HONN models could converge and have mean squared errors close to zero. Moreover, this chapter illustrates the learning algorithm with update formulas. HONN models are compared with SAS nonlinear (NLIN) models, and results show that HONN models are 3 to 12% better than SAS nonlinear models. Finally, this chapter shows how to use HONN models to find the best model, order, and coefficients without writing the regression expression, declaring parameter names, and supplying initial parameter values.\",\"PeriodicalId\":236860,\"journal\":{\"name\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3563-9.ch004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章提供了用于非线性数据分析的高阶神经网络(HONN)的一般格式和六种不同的HONN模型。然后,本章从数学上证明了HONN模型可以收敛,均方误差接近于零。此外,本章还说明了采用更新公式的学习算法。将HONN模型与SAS非线性(NLIN)模型进行了比较,结果表明,HONN模型比SAS非线性模型要好3 ~ 12%。最后,本章展示了如何使用HONN模型来找到最佳模型、顺序和系数,而无需编写回归表达式、声明参数名称和提供初始参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAS Nonlinear Models or Artificial Higher Order Neural Network Nonlinear Models?
This chapter delivers general format of higher order neural networks (HONNs) for nonlinear data analysis and six different HONN models. Then, this chapter mathematically proves that HONN models could converge and have mean squared errors close to zero. Moreover, this chapter illustrates the learning algorithm with update formulas. HONN models are compared with SAS nonlinear (NLIN) models, and results show that HONN models are 3 to 12% better than SAS nonlinear models. Finally, this chapter shows how to use HONN models to find the best model, order, and coefficients without writing the regression expression, declaring parameter names, and supplying initial parameter values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信