具有稳定度约束的MIMO系统的干扰衰减与抑制

Jiliang Shang, De-xin Gao
{"title":"具有稳定度约束的MIMO系统的干扰衰减与抑制","authors":"Jiliang Shang, De-xin Gao","doi":"10.1109/ICICIP.2010.5564256","DOIUrl":null,"url":null,"abstract":"This paper considers the optimal disturbance attenuation and rejection problem for MIMO systems affected by external sinusoidal disturbances based on stability degree constraint. The objective is to find an LQR optimal controller, by which the cost function minimum and the state with the optimal having a higher mean-square convergence rate can be obtained. A LQR control law is derive from a Riccati equation and Matrix equations. We give the existence and uniqueness conditions of the optimal control law. Finally, a practical example is given to illustrate the effectiveness of the theory","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disturbance attenuation and rejection for MIMO systems with stability degree constraint\",\"authors\":\"Jiliang Shang, De-xin Gao\",\"doi\":\"10.1109/ICICIP.2010.5564256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the optimal disturbance attenuation and rejection problem for MIMO systems affected by external sinusoidal disturbances based on stability degree constraint. The objective is to find an LQR optimal controller, by which the cost function minimum and the state with the optimal having a higher mean-square convergence rate can be obtained. A LQR control law is derive from a Riccati equation and Matrix equations. We give the existence and uniqueness conditions of the optimal control law. Finally, a practical example is given to illustrate the effectiveness of the theory\",\"PeriodicalId\":152024,\"journal\":{\"name\":\"2010 International Conference on Intelligent Control and Information Processing\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2010.5564256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5564256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于稳定性约束的受外部正弦干扰的MIMO系统的最优干扰衰减和抑制问题。目标是找到一个LQR最优控制器,该控制器使代价函数最小,且最优状态具有较高的均方收敛率。由Riccati方程和矩阵方程推导出LQR控制律。给出了最优控制律的存在唯一性条件。最后,通过一个实例说明了该理论的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disturbance attenuation and rejection for MIMO systems with stability degree constraint
This paper considers the optimal disturbance attenuation and rejection problem for MIMO systems affected by external sinusoidal disturbances based on stability degree constraint. The objective is to find an LQR optimal controller, by which the cost function minimum and the state with the optimal having a higher mean-square convergence rate can be obtained. A LQR control law is derive from a Riccati equation and Matrix equations. We give the existence and uniqueness conditions of the optimal control law. Finally, a practical example is given to illustrate the effectiveness of the theory
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信