原子氢退火法还原氧化石墨烯

A. Heya, N. Matsuo
{"title":"原子氢退火法还原氧化石墨烯","authors":"A. Heya, N. Matsuo","doi":"10.1109/AM-FPD.2016.7543614","DOIUrl":null,"url":null,"abstract":"Effect of atomic hydrogen annealing (AHA) on graphene oxide (GO) was investigated. In AHA, the high-density atomic hydrogen is generated on heated tungsten (W) surface by catalytic cracking reaction. From X-ray photoelectron spectra, GO films were reduced by AHA. The sheet resistance of the GO film was decreased by 5 orders of magnitude at W mesh temperature of 1780 °C, sample temperature of 220 °C and treatment time of 1800 s. The reduction of GO films relates chemical reaction due to atomic hydrogen because the GO films was not reduced by He treatment. The C-O-C bonds in GO films were preferentially reduced by AHA.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of graphene oxide by atomic hydrogen annealing\",\"authors\":\"A. Heya, N. Matsuo\",\"doi\":\"10.1109/AM-FPD.2016.7543614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of atomic hydrogen annealing (AHA) on graphene oxide (GO) was investigated. In AHA, the high-density atomic hydrogen is generated on heated tungsten (W) surface by catalytic cracking reaction. From X-ray photoelectron spectra, GO films were reduced by AHA. The sheet resistance of the GO film was decreased by 5 orders of magnitude at W mesh temperature of 1780 °C, sample temperature of 220 °C and treatment time of 1800 s. The reduction of GO films relates chemical reaction due to atomic hydrogen because the GO films was not reduced by He treatment. The C-O-C bonds in GO films were preferentially reduced by AHA.\",\"PeriodicalId\":422453,\"journal\":{\"name\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AM-FPD.2016.7543614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了原子氢退火(AHA)对氧化石墨烯(GO)的影响。在AHA中,通过催化裂化反应在加热的钨(W)表面生成高密度的原子氢。从x射线光电子能谱上看,氧化石墨烯薄膜被AHA还原。在W网温度为1780℃,样品温度为220℃,处理时间为1800 s时,氧化石墨烯薄膜的片电阻降低了5个数量级。氧化石墨烯薄膜的还原与原子氢的化学反应有关,因为氧化石墨烯薄膜没有经过He处理而还原。氧化石墨烯薄膜中的C-O-C键被AHA优先还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of graphene oxide by atomic hydrogen annealing
Effect of atomic hydrogen annealing (AHA) on graphene oxide (GO) was investigated. In AHA, the high-density atomic hydrogen is generated on heated tungsten (W) surface by catalytic cracking reaction. From X-ray photoelectron spectra, GO films were reduced by AHA. The sheet resistance of the GO film was decreased by 5 orders of magnitude at W mesh temperature of 1780 °C, sample temperature of 220 °C and treatment time of 1800 s. The reduction of GO films relates chemical reaction due to atomic hydrogen because the GO films was not reduced by He treatment. The C-O-C bonds in GO films were preferentially reduced by AHA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信