大型复杂属性网络的增量社团检测

Zhe Chen, Aixin Sun, Xiaokui Xiao
{"title":"大型复杂属性网络的增量社团检测","authors":"Zhe Chen, Aixin Sun, Xiaokui Xiao","doi":"10.1145/3451216","DOIUrl":null,"url":null,"abstract":"Community detection on network data is a fundamental task, and has many applications in industry. Network data in industry can be very large, with incomplete and complex attributes, and more importantly, growing. This calls for a community detection technique that is able to handle both attribute and topological information on large scale networks, and also is incremental. In this article, we propose inc-AGGMMR, an incremental community detection framework that is able to effectively address the challenges that come from scalability, mixed attributes, incomplete values, and evolving of the network. Through construction of augmented graph, we map attributes into the network by introducing attribute centers and belongingness edges. The communities are then detected by modularity maximization. During this process, we adjust the weights of belongingness edges to balance the contribution between attribute and topological information to the detection of communities. The weight adjustment mechanism enables incremental updates of community membership of all vertices. We evaluate inc-AGGMMR on five benchmark datasets against eight strong baselines. We also provide a case study to incrementally detect communities on a PayPal payment network which contains users with transactions. The results demonstrate inc-AGGMMR’s effectiveness and practicability.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Incremental Community Detection on Large Complex Attributed Network\",\"authors\":\"Zhe Chen, Aixin Sun, Xiaokui Xiao\",\"doi\":\"10.1145/3451216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community detection on network data is a fundamental task, and has many applications in industry. Network data in industry can be very large, with incomplete and complex attributes, and more importantly, growing. This calls for a community detection technique that is able to handle both attribute and topological information on large scale networks, and also is incremental. In this article, we propose inc-AGGMMR, an incremental community detection framework that is able to effectively address the challenges that come from scalability, mixed attributes, incomplete values, and evolving of the network. Through construction of augmented graph, we map attributes into the network by introducing attribute centers and belongingness edges. The communities are then detected by modularity maximization. During this process, we adjust the weights of belongingness edges to balance the contribution between attribute and topological information to the detection of communities. The weight adjustment mechanism enables incremental updates of community membership of all vertices. We evaluate inc-AGGMMR on five benchmark datasets against eight strong baselines. We also provide a case study to incrementally detect communities on a PayPal payment network which contains users with transactions. The results demonstrate inc-AGGMMR’s effectiveness and practicability.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3451216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3451216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

网络数据的社区检测是一项基础性工作,在工业中有着广泛的应用。工业中的网络数据可能非常庞大,具有不完整和复杂的属性,更重要的是,它还在不断增长。这就需要一种社区检测技术,这种技术既能处理大规模网络上的属性信息,又能处理拓扑信息,而且是增量的。在本文中,我们提出了incc - aggmmr,这是一种增量社区检测框架,能够有效地解决来自可伸缩性、混合属性、不完整值和网络演进的挑战。通过构造增广图,引入属性中心和归属边,将属性映射到网络中。然后通过模块化最大化来检测社区。在此过程中,我们通过调整归属边的权重来平衡属性信息和拓扑信息对群体检测的贡献。权重调整机制支持所有顶点的社区成员的增量更新。我们在五个基准数据集上对八个强基线进行了评估。我们还提供了一个案例研究,以逐步检测包含交易用户的PayPal支付网络上的社区。结果证明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Community Detection on Large Complex Attributed Network
Community detection on network data is a fundamental task, and has many applications in industry. Network data in industry can be very large, with incomplete and complex attributes, and more importantly, growing. This calls for a community detection technique that is able to handle both attribute and topological information on large scale networks, and also is incremental. In this article, we propose inc-AGGMMR, an incremental community detection framework that is able to effectively address the challenges that come from scalability, mixed attributes, incomplete values, and evolving of the network. Through construction of augmented graph, we map attributes into the network by introducing attribute centers and belongingness edges. The communities are then detected by modularity maximization. During this process, we adjust the weights of belongingness edges to balance the contribution between attribute and topological information to the detection of communities. The weight adjustment mechanism enables incremental updates of community membership of all vertices. We evaluate inc-AGGMMR on five benchmark datasets against eight strong baselines. We also provide a case study to incrementally detect communities on a PayPal payment network which contains users with transactions. The results demonstrate inc-AGGMMR’s effectiveness and practicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信