一种改进的基于链接分析的聚类集成方法

Li-Juan Wang, Z. Hao
{"title":"一种改进的基于链接分析的聚类集成方法","authors":"Li-Juan Wang, Z. Hao","doi":"10.1109/ICMLC.2012.6358884","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved link analysis based clustering ensemble method (ILCEM). ILCEM can transform binary data-cluster association matrix into real-valued matrix according to the similarity between clusters in all base clustering. The refined data-cluster association matrix can generate more information to clustering ensemble so as to improve the performance of clustering. Experimental results on three VCI datasets have shown that ILCEM is better than KMC, base clustering method and CSM+GKMC.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved link analysis based clustering ensemble method\",\"authors\":\"Li-Juan Wang, Z. Hao\",\"doi\":\"10.1109/ICMLC.2012.6358884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved link analysis based clustering ensemble method (ILCEM). ILCEM can transform binary data-cluster association matrix into real-valued matrix according to the similarity between clusters in all base clustering. The refined data-cluster association matrix can generate more information to clustering ensemble so as to improve the performance of clustering. Experimental results on three VCI datasets have shown that ILCEM is better than KMC, base clustering method and CSM+GKMC.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6358884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6358884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的基于链接分析的聚类集成方法。ILCEM可以根据所有基聚类中聚类之间的相似度将二值数据-聚类关联矩阵转化为实值矩阵。改进后的数据-聚类关联矩阵可以为聚类集成生成更多的信息,从而提高聚类性能。在三个VCI数据集上的实验结果表明,ILCEM方法优于KMC方法、基聚类方法和CSM+GKMC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved link analysis based clustering ensemble method
This paper proposes an improved link analysis based clustering ensemble method (ILCEM). ILCEM can transform binary data-cluster association matrix into real-valued matrix according to the similarity between clusters in all base clustering. The refined data-cluster association matrix can generate more information to clustering ensemble so as to improve the performance of clustering. Experimental results on three VCI datasets have shown that ILCEM is better than KMC, base clustering method and CSM+GKMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信