车辆网络中的不当行为检测:一种集成学习方法

R. Sedar, Charalampos Kalalas, Paolo Dini, J. Alonso-Zarate, F. V. Gallego
{"title":"车辆网络中的不当行为检测:一种集成学习方法","authors":"R. Sedar, Charalampos Kalalas, Paolo Dini, J. Alonso-Zarate, F. V. Gallego","doi":"10.1109/GLOBECOM48099.2022.10001264","DOIUrl":null,"url":null,"abstract":"Emerging vehicle-to-everything (V2X) systems call for a diverse set of novel mechanisms to address vulnerabilities and security breaches. In this context, misbehavior detection approaches aim to detect malicious behavior of rogue V2X entities and possible attacks that may originate from them. In this paper, we introduce a data-driven ensemble framework which jointly leverages clustering and reinforcement learning to detect misbehaviors in unlabeled vehicular data. A rigorous detection assessment using an open-source dataset reveals meaningful performance trends for various attacks. In particular, while the majority of attacks can be effectively detected, detection may be curtailed for certain misbehavior types due to partly inaccurate clustering and erratic activity of the attacker over time. Performance comparison against benchmark detectors reveals the robustness of our approach in the presence of potentially inconsistent or mislabeled training data. The real-time detection capabilities of our framework are also explored in an effort to evaluate its practical feasibility in mission-critical V2X scenarios.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Misbehavior Detection in Vehicular Networks: An Ensemble Learning Approach\",\"authors\":\"R. Sedar, Charalampos Kalalas, Paolo Dini, J. Alonso-Zarate, F. V. Gallego\",\"doi\":\"10.1109/GLOBECOM48099.2022.10001264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging vehicle-to-everything (V2X) systems call for a diverse set of novel mechanisms to address vulnerabilities and security breaches. In this context, misbehavior detection approaches aim to detect malicious behavior of rogue V2X entities and possible attacks that may originate from them. In this paper, we introduce a data-driven ensemble framework which jointly leverages clustering and reinforcement learning to detect misbehaviors in unlabeled vehicular data. A rigorous detection assessment using an open-source dataset reveals meaningful performance trends for various attacks. In particular, while the majority of attacks can be effectively detected, detection may be curtailed for certain misbehavior types due to partly inaccurate clustering and erratic activity of the attacker over time. Performance comparison against benchmark detectors reveals the robustness of our approach in the presence of potentially inconsistent or mislabeled training data. The real-time detection capabilities of our framework are also explored in an effort to evaluate its practical feasibility in mission-critical V2X scenarios.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10001264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10001264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新兴的车联网(V2X)系统需要各种各样的新机制来解决漏洞和安全漏洞。在这种情况下,不当行为检测方法旨在检测恶意V2X实体的恶意行为以及可能源自它们的攻击。在本文中,我们引入了一个数据驱动的集成框架,该框架联合利用聚类和强化学习来检测未标记车辆数据中的错误行为。使用开源数据集的严格检测评估揭示了各种攻击的有意义的性能趋势。特别是,虽然可以有效地检测到大多数攻击,但由于部分不准确的聚类和攻击者随时间的不稳定活动,可能会减少对某些不当行为类型的检测。与基准检测器的性能比较揭示了我们的方法在存在潜在的不一致或错误标记的训练数据时的鲁棒性。我们还探索了框架的实时检测能力,以评估其在关键任务V2X场景中的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Misbehavior Detection in Vehicular Networks: An Ensemble Learning Approach
Emerging vehicle-to-everything (V2X) systems call for a diverse set of novel mechanisms to address vulnerabilities and security breaches. In this context, misbehavior detection approaches aim to detect malicious behavior of rogue V2X entities and possible attacks that may originate from them. In this paper, we introduce a data-driven ensemble framework which jointly leverages clustering and reinforcement learning to detect misbehaviors in unlabeled vehicular data. A rigorous detection assessment using an open-source dataset reveals meaningful performance trends for various attacks. In particular, while the majority of attacks can be effectively detected, detection may be curtailed for certain misbehavior types due to partly inaccurate clustering and erratic activity of the attacker over time. Performance comparison against benchmark detectors reveals the robustness of our approach in the presence of potentially inconsistent or mislabeled training data. The real-time detection capabilities of our framework are also explored in an effort to evaluate its practical feasibility in mission-critical V2X scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信