基于大数据分析的半导体制造工艺工具WAT参数变化建模及实证研究

Chen-Fu Chien, Ying-Jen Chen, Jei-Zheng Wu
{"title":"基于大数据分析的半导体制造工艺工具WAT参数变化建模及实证研究","authors":"Chen-Fu Chien, Ying-Jen Chen, Jei-Zheng Wu","doi":"10.1109/WSC.2016.7822290","DOIUrl":null,"url":null,"abstract":"With the feature size shrinkage in advanced technology nodes, the modeling of process variations has become more critical for troubleshooting and yield enhancement. Misalignment among equipment tools or chambers in process stages is a major source of process variations. Because a process flow contains hundreds of stages during semiconductor fabrication, tool/chamber misalignment may more significantly affect the variation of transistor parameters in a wafer acceptance test. This study proposes a big data analytic framework that simultaneously considers the mean difference between tools and wafer-to-wafer variation and identifies possible root causes for yield enhancement. An empirical study was conducted to demonstrate the effectiveness of proposed approach and obtained promising results.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Big data analytics for modeling WAT parameter variation induced by process tool in semiconductor manufacturing and empirical study\",\"authors\":\"Chen-Fu Chien, Ying-Jen Chen, Jei-Zheng Wu\",\"doi\":\"10.1109/WSC.2016.7822290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the feature size shrinkage in advanced technology nodes, the modeling of process variations has become more critical for troubleshooting and yield enhancement. Misalignment among equipment tools or chambers in process stages is a major source of process variations. Because a process flow contains hundreds of stages during semiconductor fabrication, tool/chamber misalignment may more significantly affect the variation of transistor parameters in a wafer acceptance test. This study proposes a big data analytic framework that simultaneously considers the mean difference between tools and wafer-to-wafer variation and identifies possible root causes for yield enhancement. An empirical study was conducted to demonstrate the effectiveness of proposed approach and obtained promising results.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着先进技术节点特征尺寸的缩小,工艺变化的建模对于故障排除和良率提高变得更加重要。在工艺阶段,设备、工具或腔室之间的不对准是工艺变化的主要来源。由于在半导体制造过程中,工艺流程包含数百个阶段,因此在晶圆验收测试中,工具/腔室的不对中可能会更显著地影响晶体管参数的变化。本研究提出了一个大数据分析框架,同时考虑了工具之间的平均差异和晶圆之间的差异,并确定了提高良率的可能根本原因。通过实证研究验证了该方法的有效性,并取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data analytics for modeling WAT parameter variation induced by process tool in semiconductor manufacturing and empirical study
With the feature size shrinkage in advanced technology nodes, the modeling of process variations has become more critical for troubleshooting and yield enhancement. Misalignment among equipment tools or chambers in process stages is a major source of process variations. Because a process flow contains hundreds of stages during semiconductor fabrication, tool/chamber misalignment may more significantly affect the variation of transistor parameters in a wafer acceptance test. This study proposes a big data analytic framework that simultaneously considers the mean difference between tools and wafer-to-wafer variation and identifies possible root causes for yield enhancement. An empirical study was conducted to demonstrate the effectiveness of proposed approach and obtained promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信