蒂鲁凡得琅市日地表NO2的多层感知器估算方法

S. Babu, B. Thomas
{"title":"蒂鲁凡得琅市日地表NO2的多层感知器估算方法","authors":"S. Babu, B. Thomas","doi":"10.11159/icepr23.143","DOIUrl":null,"url":null,"abstract":"In this study, a machine-learning framework based on a multi-layer perceptron (MLP) algorithm is applied to estimate the daily values of air pollutant NO 2 in Thiruvananthapuram city of Kerala, India. The risk of human respiratory tract infections rises when exposed to high amounts of NO 2 [1]. Due to urbanization and its consequences, the air quality in the study region is getting deteriorated [2]. As a result, there is a pressing need for research and estimation of air pollutants like NO 2 in Thiruvananthapuram city. MLP is a supervised neural network model that is frequently used and it gains experience by learning to simulate the correlation between a set of input-output pairs [3]. This paper proposes a four-layer (i.e. one input, two hidden and one output) multi-layer perceptron neural network model for predicting the daily surface NO 2 values. Two year daily data (January 2018 to December 2019) is collected from Central Pollution Control Board, Government of India. The study utilizes 8 air pollutant parameters (PM 10 , PM 2.5 , SO 2 , NO, NO x , NH 3 , CO and Ozone) and 7 meteorological parameters (wind speed, wind direction, air temperature, solar radiance, relative humidity, atmospheric pressure and rainfall) in the model development. Due to instrumental errors, certain data are missing and such missing daily data records are excluded from","PeriodicalId":398088,"journal":{"name":"Proceedings of the 9th World Congress on New Technologies","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Layer Perceptron Approach For Estimating Daily Surface NO2 In Thiruvananthapuram City\",\"authors\":\"S. Babu, B. Thomas\",\"doi\":\"10.11159/icepr23.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a machine-learning framework based on a multi-layer perceptron (MLP) algorithm is applied to estimate the daily values of air pollutant NO 2 in Thiruvananthapuram city of Kerala, India. The risk of human respiratory tract infections rises when exposed to high amounts of NO 2 [1]. Due to urbanization and its consequences, the air quality in the study region is getting deteriorated [2]. As a result, there is a pressing need for research and estimation of air pollutants like NO 2 in Thiruvananthapuram city. MLP is a supervised neural network model that is frequently used and it gains experience by learning to simulate the correlation between a set of input-output pairs [3]. This paper proposes a four-layer (i.e. one input, two hidden and one output) multi-layer perceptron neural network model for predicting the daily surface NO 2 values. Two year daily data (January 2018 to December 2019) is collected from Central Pollution Control Board, Government of India. The study utilizes 8 air pollutant parameters (PM 10 , PM 2.5 , SO 2 , NO, NO x , NH 3 , CO and Ozone) and 7 meteorological parameters (wind speed, wind direction, air temperature, solar radiance, relative humidity, atmospheric pressure and rainfall) in the model development. Due to instrumental errors, certain data are missing and such missing daily data records are excluded from\",\"PeriodicalId\":398088,\"journal\":{\"name\":\"Proceedings of the 9th World Congress on New Technologies\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th World Congress on New Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/icepr23.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th World Congress on New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icepr23.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,基于多层感知器(MLP)算法的机器学习框架被应用于估计印度喀拉拉邦蒂鲁凡南塔普兰市空气污染物NO 2的日值。当暴露于大量二氧化氮时,人类呼吸道感染的风险增加[1]。由于城市化及其后果,研究区域的空气质量日益恶化[2]。因此,迫切需要对Thiruvananthapuram市的二氧化氮等空气污染物进行研究和评估。MLP是一种常用的监督神经网络模型,它通过学习模拟一组输入输出对之间的相关性来获得经验[3]。本文提出了一种四层(即一输入、两隐藏、一输出)多层感知器神经网络模型,用于预测地表日no2值。每日数据(2018年1月至2019年12月)收集自印度政府中央污染控制委员会。研究利用8个大气污染物参数(PM 10、PM 2.5、so2、NO、NO x、nh3、CO和Ozone)和7个气象参数(风速、风向、气温、太阳辐照度、相对湿度、大气压力和降雨量)进行模型开发。由于仪器误差,某些数据缺失,这些缺失的日常数据记录被排除在外
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Layer Perceptron Approach For Estimating Daily Surface NO2 In Thiruvananthapuram City
In this study, a machine-learning framework based on a multi-layer perceptron (MLP) algorithm is applied to estimate the daily values of air pollutant NO 2 in Thiruvananthapuram city of Kerala, India. The risk of human respiratory tract infections rises when exposed to high amounts of NO 2 [1]. Due to urbanization and its consequences, the air quality in the study region is getting deteriorated [2]. As a result, there is a pressing need for research and estimation of air pollutants like NO 2 in Thiruvananthapuram city. MLP is a supervised neural network model that is frequently used and it gains experience by learning to simulate the correlation between a set of input-output pairs [3]. This paper proposes a four-layer (i.e. one input, two hidden and one output) multi-layer perceptron neural network model for predicting the daily surface NO 2 values. Two year daily data (January 2018 to December 2019) is collected from Central Pollution Control Board, Government of India. The study utilizes 8 air pollutant parameters (PM 10 , PM 2.5 , SO 2 , NO, NO x , NH 3 , CO and Ozone) and 7 meteorological parameters (wind speed, wind direction, air temperature, solar radiance, relative humidity, atmospheric pressure and rainfall) in the model development. Due to instrumental errors, certain data are missing and such missing daily data records are excluded from
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信