锦标赛粒子群优化

W. H. Duminy, A. Engelbrecht
{"title":"锦标赛粒子群优化","authors":"W. H. Duminy, A. Engelbrecht","doi":"10.1109/CIG.2007.368091","DOIUrl":null,"url":null,"abstract":"This paper introduces tournament particle swarm optimization (PSO) as a method to optimize weights of game tree evaluation functions in a competitive environment using particle swarm optimization. This method makes use of tournaments to ensure a fair evaluation of the performance of particles in the swarm, relative to that of other particles. The empirical work presented compares the performance of different tournament methods that can be applied to the tournament PSO, with application to Checkers.","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tournament Particle Swarm Optimization\",\"authors\":\"W. H. Duminy, A. Engelbrecht\",\"doi\":\"10.1109/CIG.2007.368091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces tournament particle swarm optimization (PSO) as a method to optimize weights of game tree evaluation functions in a competitive environment using particle swarm optimization. This method makes use of tournaments to ensure a fair evaluation of the performance of particles in the swarm, relative to that of other particles. The empirical work presented compares the performance of different tournament methods that can be applied to the tournament PSO, with application to Checkers.\",\"PeriodicalId\":365269,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2007.368091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了竞赛粒子群算法(PSO)作为一种利用粒子群算法优化竞争环境下博弈树评价函数权重的方法。这种方法利用比赛来确保群体中粒子相对于其他粒子的性能得到公平的评估。本文的实证工作比较了不同比赛方法的性能,这些方法可以应用于比赛PSO,并应用于跳棋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tournament Particle Swarm Optimization
This paper introduces tournament particle swarm optimization (PSO) as a method to optimize weights of game tree evaluation functions in a competitive environment using particle swarm optimization. This method makes use of tournaments to ensure a fair evaluation of the performance of particles in the swarm, relative to that of other particles. The empirical work presented compares the performance of different tournament methods that can be applied to the tournament PSO, with application to Checkers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信