利用co2激光辐射控制薄表面层熔化,非烧蚀去除研磨光学玻璃基板的亚表面损伤

M. Jung, C. Trum, Beate Schmidbauer, E. Willenborg, R. Rascher
{"title":"利用co2激光辐射控制薄表面层熔化,非烧蚀去除研磨光学玻璃基板的亚表面损伤","authors":"M. Jung, C. Trum, Beate Schmidbauer, E. Willenborg, R. Rascher","doi":"10.1117/12.2564801","DOIUrl":null,"url":null,"abstract":"The form generation of optical surfaces by grinding and mechanical polishing results in small sub surface damages in the form of micro cracks that conventionally have to be removed by further removal of the damaged surface layers. In order to reduce process time and material cost non-ablative methods for removal of micro cracks are desired. Utilising the low optical penetration depths of less than 10 μm for CO2-laser radiation in glass, the laser energy can be used to heat up and melt thin surface layers. Using a 1.5 kW CO2-laser, a quasi-line focus formed by a scanner unit and a constant feed speed, it is possible to close all micro cracks present in the rough grinded test surfaces (max. SSD-depth ~ 63 μm), while achieving a process time of less than 2 seconds for a Ø 30 mm N-BK7 lens, respectively 7.5 seconds for fused silica. With a Sa as low as 50 nm and low distortion from the original shape the surfaces can directly be conventionally polished, further reducing the process chain complexity.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-ablative removal of sub surface damages in grinded optical glass substrates by controlled melting of thin surface layers using CO2-laser radiation\",\"authors\":\"M. Jung, C. Trum, Beate Schmidbauer, E. Willenborg, R. Rascher\",\"doi\":\"10.1117/12.2564801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The form generation of optical surfaces by grinding and mechanical polishing results in small sub surface damages in the form of micro cracks that conventionally have to be removed by further removal of the damaged surface layers. In order to reduce process time and material cost non-ablative methods for removal of micro cracks are desired. Utilising the low optical penetration depths of less than 10 μm for CO2-laser radiation in glass, the laser energy can be used to heat up and melt thin surface layers. Using a 1.5 kW CO2-laser, a quasi-line focus formed by a scanner unit and a constant feed speed, it is possible to close all micro cracks present in the rough grinded test surfaces (max. SSD-depth ~ 63 μm), while achieving a process time of less than 2 seconds for a Ø 30 mm N-BK7 lens, respectively 7.5 seconds for fused silica. With a Sa as low as 50 nm and low distortion from the original shape the surfaces can directly be conventionally polished, further reducing the process chain complexity.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2564801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2564801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过研磨和机械抛光产生的光学表面会产生微裂纹形式的小亚表面损伤,通常必须通过进一步去除损坏的表面层来消除这些损伤。为了减少加工时间和材料成本,需要非烧蚀法去除微裂纹。利用co2激光在玻璃中的低光穿透深度小于10 μm,激光能量可以用来加热和熔化薄的表面层。使用1.5 kW的co2激光器,由扫描器单元形成的准线聚焦和恒定的进给速度,可以关闭粗糙研磨测试表面上存在的所有微裂纹。同时,对于Ø 30 mm N-BK7透镜的工艺时间小于2秒,而对于熔融二氧化硅透镜的工艺时间为7.5秒。由于Sa低至50 nm,并且与原始形状的畸变很小,因此可以直接对表面进行常规抛光,进一步降低了工艺链的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-ablative removal of sub surface damages in grinded optical glass substrates by controlled melting of thin surface layers using CO2-laser radiation
The form generation of optical surfaces by grinding and mechanical polishing results in small sub surface damages in the form of micro cracks that conventionally have to be removed by further removal of the damaged surface layers. In order to reduce process time and material cost non-ablative methods for removal of micro cracks are desired. Utilising the low optical penetration depths of less than 10 μm for CO2-laser radiation in glass, the laser energy can be used to heat up and melt thin surface layers. Using a 1.5 kW CO2-laser, a quasi-line focus formed by a scanner unit and a constant feed speed, it is possible to close all micro cracks present in the rough grinded test surfaces (max. SSD-depth ~ 63 μm), while achieving a process time of less than 2 seconds for a Ø 30 mm N-BK7 lens, respectively 7.5 seconds for fused silica. With a Sa as low as 50 nm and low distortion from the original shape the surfaces can directly be conventionally polished, further reducing the process chain complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信