压缩无记忆序列的平均大小写强冗余的单字母表征

Maryam Hosseini, N. Santhanam
{"title":"压缩无记忆序列的平均大小写强冗余的单字母表征","authors":"Maryam Hosseini, N. Santhanam","doi":"10.1109/ALLERTON.2015.7447108","DOIUrl":null,"url":null,"abstract":"We obtain a condition that is both necessary and sufficient to characterize strong universal compressibility (in the average sense) of sequences generated by iid sampling from a collection cP of distributions over a countably infinite alphabet. Contrary to the worst case regret formulation of universal compression, finite single letter (average case) redundancy of cP does not automatically imply that the expected redundancy of describing length-n strings sampled iid from cP grows sublinearly with n. Instead, we prove that asymptotic per-symbol redundancy of universally compressing length-n iid sequences from cP is characterized by how well the tails of their single letter marginals can be universally described, and we formalize the later as the tail-redundancy of cP.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single letter characterization of average-case strong redundancy of compressing memoryless sequences\",\"authors\":\"Maryam Hosseini, N. Santhanam\",\"doi\":\"10.1109/ALLERTON.2015.7447108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a condition that is both necessary and sufficient to characterize strong universal compressibility (in the average sense) of sequences generated by iid sampling from a collection cP of distributions over a countably infinite alphabet. Contrary to the worst case regret formulation of universal compression, finite single letter (average case) redundancy of cP does not automatically imply that the expected redundancy of describing length-n strings sampled iid from cP grows sublinearly with n. Instead, we prove that asymptotic per-symbol redundancy of universally compressing length-n iid sequences from cP is characterized by how well the tails of their single letter marginals can be universally described, and we formalize the later as the tail-redundancy of cP.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们得到了一个充分必要的条件,证明了在可数无限字母上由分布的集合cP进行iid抽样生成的序列具有强的一般可压缩性。与通用压缩的最坏情况遗憾公式相反,cP的有限单字母(平均情况)冗余并不自动意味着描述从cP中采样的长度为n的iid字符串的期望冗余随着n次线性增长。相反,我们证明了从cP中通用压缩长度为n的iid序列的渐近每符号冗余的特征是它们的单字母边缘的尾部可以被普遍描述的程度。我们将后者形式化为cP的尾部冗余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single letter characterization of average-case strong redundancy of compressing memoryless sequences
We obtain a condition that is both necessary and sufficient to characterize strong universal compressibility (in the average sense) of sequences generated by iid sampling from a collection cP of distributions over a countably infinite alphabet. Contrary to the worst case regret formulation of universal compression, finite single letter (average case) redundancy of cP does not automatically imply that the expected redundancy of describing length-n strings sampled iid from cP grows sublinearly with n. Instead, we prove that asymptotic per-symbol redundancy of universally compressing length-n iid sequences from cP is characterized by how well the tails of their single letter marginals can be universally described, and we formalize the later as the tail-redundancy of cP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信