IGIDS:采用遗传算法的智能入侵检测系统

K. Srinivasa, Saumya Chandra, Siddharth Kajaria, Shilpita Mukherjee
{"title":"IGIDS:采用遗传算法的智能入侵检测系统","authors":"K. Srinivasa, Saumya Chandra, Siddharth Kajaria, Shilpita Mukherjee","doi":"10.1109/WICT.2011.6141359","DOIUrl":null,"url":null,"abstract":"We present a genetic algorithm based network intrusion detection system named IGIDS, where the genetic algorithm is used for pruning best individuals in the rule set database. The process makes the decision faster as the search space of the resulting rule set is much compact when compared to the original data set. This makes IDS faster and intelligent. We generate possible intrusions which forms the basis for detecting intrusions on the network traffic. Our method exhibits a high detection rate with low false positives. We have used DARPA Dataset for initial training and testing purpose.","PeriodicalId":178645,"journal":{"name":"2011 World Congress on Information and Communication Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"IGIDS: Intelligent intrusion detection system using genetic algorithms\",\"authors\":\"K. Srinivasa, Saumya Chandra, Siddharth Kajaria, Shilpita Mukherjee\",\"doi\":\"10.1109/WICT.2011.6141359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a genetic algorithm based network intrusion detection system named IGIDS, where the genetic algorithm is used for pruning best individuals in the rule set database. The process makes the decision faster as the search space of the resulting rule set is much compact when compared to the original data set. This makes IDS faster and intelligent. We generate possible intrusions which forms the basis for detecting intrusions on the network traffic. Our method exhibits a high detection rate with low false positives. We have used DARPA Dataset for initial training and testing purpose.\",\"PeriodicalId\":178645,\"journal\":{\"name\":\"2011 World Congress on Information and Communication Technologies\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 World Congress on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2011.6141359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2011.6141359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于遗传算法的网络入侵检测系统IGIDS,该系统利用遗传算法对规则集数据库中的最佳个体进行裁剪。这个过程使决策更快,因为与原始数据集相比,结果规则集的搜索空间要紧凑得多。这使得IDS更快、更智能。我们生成可能的入侵,这构成了对网络流量检测入侵的基础。我们的方法具有高检出率和低误报的特点。我们使用DARPA数据集进行初始训练和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IGIDS: Intelligent intrusion detection system using genetic algorithms
We present a genetic algorithm based network intrusion detection system named IGIDS, where the genetic algorithm is used for pruning best individuals in the rule set database. The process makes the decision faster as the search space of the resulting rule set is much compact when compared to the original data set. This makes IDS faster and intelligent. We generate possible intrusions which forms the basis for detecting intrusions on the network traffic. Our method exhibits a high detection rate with low false positives. We have used DARPA Dataset for initial training and testing purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信