高效自主机器人技能习得的感觉运动抽象选择

G. Konidaris, A. Barto
{"title":"高效自主机器人技能习得的感觉运动抽象选择","authors":"G. Konidaris, A. Barto","doi":"10.1109/DEVLRN.2008.4640821","DOIUrl":null,"url":null,"abstract":"To achieve truly autonomous robot skill acquisition, a robot can use neither a single large general state space (because learning is not feasible), nor a small problem-specific state space (because it is not general).We propose that instead a robot should have a set of sensorimotor abstractions that can be considered small candidate state spaces, and select one that is appropriate for learning a skill when it decides to do so. We introduce an incremental algorithm that selects a state space in which to learn a skill from among a set of potential spaces given a successful sample trajectory. The algorithm returns a policy fitting that trajectory in the new state space so that learning does not have to begin from scratch. We demonstrate that the algorithm selects an appropriate space for a sequence of demonstration skills on a physically realistic simulated mobile robot, and that the resulting initial policies closely match the sample trajectory.","PeriodicalId":366099,"journal":{"name":"2008 7th IEEE International Conference on Development and Learning","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sensorimotor abstraction selection for efficient, autonomous robot skill acquisition\",\"authors\":\"G. Konidaris, A. Barto\",\"doi\":\"10.1109/DEVLRN.2008.4640821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve truly autonomous robot skill acquisition, a robot can use neither a single large general state space (because learning is not feasible), nor a small problem-specific state space (because it is not general).We propose that instead a robot should have a set of sensorimotor abstractions that can be considered small candidate state spaces, and select one that is appropriate for learning a skill when it decides to do so. We introduce an incremental algorithm that selects a state space in which to learn a skill from among a set of potential spaces given a successful sample trajectory. The algorithm returns a policy fitting that trajectory in the new state space so that learning does not have to begin from scratch. We demonstrate that the algorithm selects an appropriate space for a sequence of demonstration skills on a physically realistic simulated mobile robot, and that the resulting initial policies closely match the sample trajectory.\",\"PeriodicalId\":366099,\"journal\":{\"name\":\"2008 7th IEEE International Conference on Development and Learning\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 7th IEEE International Conference on Development and Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2008.4640821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th IEEE International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2008.4640821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

为了实现真正自主的机器人技能获取,机器人既不能使用单一的大型通用状态空间(因为学习是不可行的),也不能使用小的问题特定状态空间(因为它不是通用的)。相反,我们建议机器人应该有一组感觉运动抽象,这些抽象可以被认为是小的候选状态空间,并选择一个适合学习技能的状态空间。我们引入了一种增量算法,该算法在给定成功样本轨迹的一组潜在空间中选择一个状态空间来学习技能。该算法返回一个在新状态空间中适合该轨迹的策略,这样学习就不必从头开始了。我们证明了该算法在物理逼真的模拟移动机器人上为一系列演示技能选择适当的空间,并且所得到的初始策略与样本轨迹密切匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensorimotor abstraction selection for efficient, autonomous robot skill acquisition
To achieve truly autonomous robot skill acquisition, a robot can use neither a single large general state space (because learning is not feasible), nor a small problem-specific state space (because it is not general).We propose that instead a robot should have a set of sensorimotor abstractions that can be considered small candidate state spaces, and select one that is appropriate for learning a skill when it decides to do so. We introduce an incremental algorithm that selects a state space in which to learn a skill from among a set of potential spaces given a successful sample trajectory. The algorithm returns a policy fitting that trajectory in the new state space so that learning does not have to begin from scratch. We demonstrate that the algorithm selects an appropriate space for a sequence of demonstration skills on a physically realistic simulated mobile robot, and that the resulting initial policies closely match the sample trajectory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信