{"title":"高效自主机器人技能习得的感觉运动抽象选择","authors":"G. Konidaris, A. Barto","doi":"10.1109/DEVLRN.2008.4640821","DOIUrl":null,"url":null,"abstract":"To achieve truly autonomous robot skill acquisition, a robot can use neither a single large general state space (because learning is not feasible), nor a small problem-specific state space (because it is not general).We propose that instead a robot should have a set of sensorimotor abstractions that can be considered small candidate state spaces, and select one that is appropriate for learning a skill when it decides to do so. We introduce an incremental algorithm that selects a state space in which to learn a skill from among a set of potential spaces given a successful sample trajectory. The algorithm returns a policy fitting that trajectory in the new state space so that learning does not have to begin from scratch. We demonstrate that the algorithm selects an appropriate space for a sequence of demonstration skills on a physically realistic simulated mobile robot, and that the resulting initial policies closely match the sample trajectory.","PeriodicalId":366099,"journal":{"name":"2008 7th IEEE International Conference on Development and Learning","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sensorimotor abstraction selection for efficient, autonomous robot skill acquisition\",\"authors\":\"G. Konidaris, A. Barto\",\"doi\":\"10.1109/DEVLRN.2008.4640821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve truly autonomous robot skill acquisition, a robot can use neither a single large general state space (because learning is not feasible), nor a small problem-specific state space (because it is not general).We propose that instead a robot should have a set of sensorimotor abstractions that can be considered small candidate state spaces, and select one that is appropriate for learning a skill when it decides to do so. We introduce an incremental algorithm that selects a state space in which to learn a skill from among a set of potential spaces given a successful sample trajectory. The algorithm returns a policy fitting that trajectory in the new state space so that learning does not have to begin from scratch. We demonstrate that the algorithm selects an appropriate space for a sequence of demonstration skills on a physically realistic simulated mobile robot, and that the resulting initial policies closely match the sample trajectory.\",\"PeriodicalId\":366099,\"journal\":{\"name\":\"2008 7th IEEE International Conference on Development and Learning\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 7th IEEE International Conference on Development and Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2008.4640821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th IEEE International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2008.4640821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensorimotor abstraction selection for efficient, autonomous robot skill acquisition
To achieve truly autonomous robot skill acquisition, a robot can use neither a single large general state space (because learning is not feasible), nor a small problem-specific state space (because it is not general).We propose that instead a robot should have a set of sensorimotor abstractions that can be considered small candidate state spaces, and select one that is appropriate for learning a skill when it decides to do so. We introduce an incremental algorithm that selects a state space in which to learn a skill from among a set of potential spaces given a successful sample trajectory. The algorithm returns a policy fitting that trajectory in the new state space so that learning does not have to begin from scratch. We demonstrate that the algorithm selects an appropriate space for a sequence of demonstration skills on a physically realistic simulated mobile robot, and that the resulting initial policies closely match the sample trajectory.