{"title":"基于预测建模的嵌入式多核系统功率估计","authors":"S. Sankaran","doi":"10.1145/2903150.2911714","DOIUrl":null,"url":null,"abstract":"The increasing number of cores in embedded devices results in improved performance compared to single-core systems. Further, the unique characteristics of these systems provide numerous opportunities for power management which require models for power estimation. In this work, a statistical approach that models the impact of the individual cores and memory hierarchy on overall power consumed by Chip Multiprocessors is developed using Performance Counters. In particular, we construct a per-core based power model using SPLASH2 benchmarks by leveraging concurrency for multicore systems. Our model is simple and technology independent and as a result executes faster incurring lesser overhead. Evaluation of the model shows a strong correlation between core-level activity and power consumption and that the model predicts power consumption for newer observations with minimal errors. In addition, we discuss a few applications where the model can be utilized towards estimating power consumption.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Predictive modeling based power estimation for embedded multicore systems\",\"authors\":\"S. Sankaran\",\"doi\":\"10.1145/2903150.2911714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of cores in embedded devices results in improved performance compared to single-core systems. Further, the unique characteristics of these systems provide numerous opportunities for power management which require models for power estimation. In this work, a statistical approach that models the impact of the individual cores and memory hierarchy on overall power consumed by Chip Multiprocessors is developed using Performance Counters. In particular, we construct a per-core based power model using SPLASH2 benchmarks by leveraging concurrency for multicore systems. Our model is simple and technology independent and as a result executes faster incurring lesser overhead. Evaluation of the model shows a strong correlation between core-level activity and power consumption and that the model predicts power consumption for newer observations with minimal errors. In addition, we discuss a few applications where the model can be utilized towards estimating power consumption.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2911714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2911714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive modeling based power estimation for embedded multicore systems
The increasing number of cores in embedded devices results in improved performance compared to single-core systems. Further, the unique characteristics of these systems provide numerous opportunities for power management which require models for power estimation. In this work, a statistical approach that models the impact of the individual cores and memory hierarchy on overall power consumed by Chip Multiprocessors is developed using Performance Counters. In particular, we construct a per-core based power model using SPLASH2 benchmarks by leveraging concurrency for multicore systems. Our model is simple and technology independent and as a result executes faster incurring lesser overhead. Evaluation of the model shows a strong correlation between core-level activity and power consumption and that the model predicts power consumption for newer observations with minimal errors. In addition, we discuss a few applications where the model can be utilized towards estimating power consumption.