利用方差场扩散的小波域图像收缩

Zhenyu Liu, Jing Tian, Li Chen, Yongtao Wang
{"title":"利用方差场扩散的小波域图像收缩","authors":"Zhenyu Liu, Jing Tian, Li Chen, Yongtao Wang","doi":"10.1109/ACPR.2011.6166660","DOIUrl":null,"url":null,"abstract":"Wavelet shrinkage is an image denoising technique based on the concept of thresholding the wavelet coefficients. The key challenge of wavelet shrinkage is to find an appropriate threshold value, which is typically controlled by the signal variance. To tackle this challenge, a new image shrinkage approach is proposed in this paper by using a variance field diffusion, which can provide more accurate variance estimation. Experimental results are provided to demonstrate the superior performance of the proposed approach.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-domain image shrinkage using variance field diffusion\",\"authors\":\"Zhenyu Liu, Jing Tian, Li Chen, Yongtao Wang\",\"doi\":\"10.1109/ACPR.2011.6166660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet shrinkage is an image denoising technique based on the concept of thresholding the wavelet coefficients. The key challenge of wavelet shrinkage is to find an appropriate threshold value, which is typically controlled by the signal variance. To tackle this challenge, a new image shrinkage approach is proposed in this paper by using a variance field diffusion, which can provide more accurate variance estimation. Experimental results are provided to demonstrate the superior performance of the proposed approach.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小波收缩是一种基于小波系数阈值化的图像去噪技术。小波压缩的关键挑战是找到一个合适的阈值,该阈值通常由信号方差控制。为了解决这一问题,本文提出了一种新的图像收缩方法,该方法使用方差场扩散,可以提供更准确的方差估计。实验结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-domain image shrinkage using variance field diffusion
Wavelet shrinkage is an image denoising technique based on the concept of thresholding the wavelet coefficients. The key challenge of wavelet shrinkage is to find an appropriate threshold value, which is typically controlled by the signal variance. To tackle this challenge, a new image shrinkage approach is proposed in this paper by using a variance field diffusion, which can provide more accurate variance estimation. Experimental results are provided to demonstrate the superior performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信