基于Wordnet的汉语文本蕴涵语义和依存句法分析

Chun-yung Tu, Min-Yuh Day
{"title":"基于Wordnet的汉语文本蕴涵语义和依存句法分析","authors":"Chun-yung Tu, Min-Yuh Day","doi":"10.1109/IRI.2013.6642455","DOIUrl":null,"url":null,"abstract":"Recognizing Inference in TExt (RITE) is a task for automatically detecting entailment, paraphrase, and contradiction in texts which addressing major text understanding in information access research areas. In this paper, we proposed a Chinese textual entailment system using Wordnet semantic and dependency syntactic approaches in Recognizing Inference in Text (RITE) using the NTCIR-10 RITE-2 subtask datasets. Wordnet is used to recognize entailment at lexical level. Dependency syntactic approach is a tree edit distance algorithm applied on the dependency trees of both the text and the hypothesis. We thoroughly evaluate our approach using NTCIR-10 RITE-2 subtask datasets. As a result, our system achieved 73.28% on Traditional Chinese Binary-Class (BC) subtask and 74.57% on Simplified Chinese Binary-Class subtask with NTCIR-10 RITE-2 development datasets. Thorough experiments with the text fragments provided by the NTCIR-10 RITE-2 subtask showed that the proposed approach can improve system's overall accuracy.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chinese textual entailment with Wordnet semantic and dependency syntactic analysis\",\"authors\":\"Chun-yung Tu, Min-Yuh Day\",\"doi\":\"10.1109/IRI.2013.6642455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing Inference in TExt (RITE) is a task for automatically detecting entailment, paraphrase, and contradiction in texts which addressing major text understanding in information access research areas. In this paper, we proposed a Chinese textual entailment system using Wordnet semantic and dependency syntactic approaches in Recognizing Inference in Text (RITE) using the NTCIR-10 RITE-2 subtask datasets. Wordnet is used to recognize entailment at lexical level. Dependency syntactic approach is a tree edit distance algorithm applied on the dependency trees of both the text and the hypothesis. We thoroughly evaluate our approach using NTCIR-10 RITE-2 subtask datasets. As a result, our system achieved 73.28% on Traditional Chinese Binary-Class (BC) subtask and 74.57% on Simplified Chinese Binary-Class subtask with NTCIR-10 RITE-2 development datasets. Thorough experiments with the text fragments provided by the NTCIR-10 RITE-2 subtask showed that the proposed approach can improve system's overall accuracy.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文本推理识别(recognition Inference in TExt, RITE)是一项自动检测文本蕴涵、意译和矛盾的任务,是信息获取研究领域的主要文本理解问题。本文利用ntir -10 RITE-2子任务数据集,提出了一种基于Wordnet语义和依赖句法方法的中文文本蕴涵系统。Wordnet用于识别词汇层面的蕴涵。依赖句法方法是一种树形编辑距离算法,应用于文本和假设的依赖树。我们使用ntir -10 RITE-2子任务数据集彻底评估了我们的方法。在ntir -10 RITE-2开发数据集上,系统在繁体中文二进制类(BC)子任务上的完成率为73.28%,在简体中文二进制类子任务上的完成率为74.57%。通过对ntcirr -10 RITE-2子任务提供的文本片段进行实验,表明该方法可以提高系统的整体准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese textual entailment with Wordnet semantic and dependency syntactic analysis
Recognizing Inference in TExt (RITE) is a task for automatically detecting entailment, paraphrase, and contradiction in texts which addressing major text understanding in information access research areas. In this paper, we proposed a Chinese textual entailment system using Wordnet semantic and dependency syntactic approaches in Recognizing Inference in Text (RITE) using the NTCIR-10 RITE-2 subtask datasets. Wordnet is used to recognize entailment at lexical level. Dependency syntactic approach is a tree edit distance algorithm applied on the dependency trees of both the text and the hypothesis. We thoroughly evaluate our approach using NTCIR-10 RITE-2 subtask datasets. As a result, our system achieved 73.28% on Traditional Chinese Binary-Class (BC) subtask and 74.57% on Simplified Chinese Binary-Class subtask with NTCIR-10 RITE-2 development datasets. Thorough experiments with the text fragments provided by the NTCIR-10 RITE-2 subtask showed that the proposed approach can improve system's overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信