饥饿联邦数据下的鲁棒智能家居人脸识别

Jaechul Roh, Yajun Fang
{"title":"饥饿联邦数据下的鲁棒智能家居人脸识别","authors":"Jaechul Roh, Yajun Fang","doi":"10.1109/UV56588.2022.10185525","DOIUrl":null,"url":null,"abstract":"Over the past few years, the field of adversarial attack received numerous attention from various researchers with the help of successful attack success rate against well-known deep neural networks that were acknowledged to achieve high classification ability in various tasks. However, majority of the experiments were completed under a single model, which we believe it may not be an ideal case in a real-life situation. In this paper, we introduce a novel federated adversarial training method for smart home face recognition, named FLATS, where we observed some interesting findings that may not be easily noticed in a traditional adversarial attack to federated learning experiments. By applying different variations to the hyperparameters, we have spotted that our method can make the global model to be robust given a starving federated environment.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Smart Home Face Recognition Under Starving Federated Data\",\"authors\":\"Jaechul Roh, Yajun Fang\",\"doi\":\"10.1109/UV56588.2022.10185525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few years, the field of adversarial attack received numerous attention from various researchers with the help of successful attack success rate against well-known deep neural networks that were acknowledged to achieve high classification ability in various tasks. However, majority of the experiments were completed under a single model, which we believe it may not be an ideal case in a real-life situation. In this paper, we introduce a novel federated adversarial training method for smart home face recognition, named FLATS, where we observed some interesting findings that may not be easily noticed in a traditional adversarial attack to federated learning experiments. By applying different variations to the hyperparameters, we have spotted that our method can make the global model to be robust given a starving federated environment.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,对抗性攻击领域受到了众多研究者的关注,众所周知,深度神经网络在各种任务中都具有很高的分类能力。然而,大多数实验都是在单一模型下完成的,我们认为这在现实生活中可能不是一个理想的情况。在本文中,我们介绍了一种新的用于智能家居人脸识别的联邦对抗训练方法,称为FLATS,我们观察到一些有趣的发现,这些发现在传统的对抗攻击联邦学习实验中可能不容易注意到。通过对超参数应用不同的变量,我们发现我们的方法可以使全局模型在缺乏联邦环境的情况下具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Smart Home Face Recognition Under Starving Federated Data
Over the past few years, the field of adversarial attack received numerous attention from various researchers with the help of successful attack success rate against well-known deep neural networks that were acknowledged to achieve high classification ability in various tasks. However, majority of the experiments were completed under a single model, which we believe it may not be an ideal case in a real-life situation. In this paper, we introduce a novel federated adversarial training method for smart home face recognition, named FLATS, where we observed some interesting findings that may not be easily noticed in a traditional adversarial attack to federated learning experiments. By applying different variations to the hyperparameters, we have spotted that our method can make the global model to be robust given a starving federated environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信