结合多种翻译系统,实现口语理解的可移植性

Fernando García, L. Hurtado, E. Segarra, E. Arnal, G. Riccardi
{"title":"结合多种翻译系统,实现口语理解的可移植性","authors":"Fernando García, L. Hurtado, E. Segarra, E. Arnal, G. Riccardi","doi":"10.1109/SLT.2012.6424221","DOIUrl":null,"url":null,"abstract":"We are interested in the problem of learning Spoken Language Understanding (SLU) models for multiple target languages. Learning such models requires annotated corpora, and porting to different languages would require corpora with parallel text translation and semantic annotations. In this paper we investigate how to learn a SLU model in a target language starting from no target text and no semantic annotation. Our proposed algorithm is based on the idea of exploiting the diversity (with regard to performance and coverage) of multiple translation systems to transfer statistically stable word-to-concept mappings in the case of the romance language pair, French and Spanish. Each translation system performs differently at the lexical level (wrt BLEU). The best translation system performances for the semantic task are gained from their combination at different stages of the portability methodology. We have evaluated the portability algorithms on the French MEDIA corpus, using French as the source language and Spanish as the target language. The experiments show the effectiveness of the proposed methods with respect to the source language SLU baseline.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Combining multiple translation systems for Spoken Language Understanding portability\",\"authors\":\"Fernando García, L. Hurtado, E. Segarra, E. Arnal, G. Riccardi\",\"doi\":\"10.1109/SLT.2012.6424221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are interested in the problem of learning Spoken Language Understanding (SLU) models for multiple target languages. Learning such models requires annotated corpora, and porting to different languages would require corpora with parallel text translation and semantic annotations. In this paper we investigate how to learn a SLU model in a target language starting from no target text and no semantic annotation. Our proposed algorithm is based on the idea of exploiting the diversity (with regard to performance and coverage) of multiple translation systems to transfer statistically stable word-to-concept mappings in the case of the romance language pair, French and Spanish. Each translation system performs differently at the lexical level (wrt BLEU). The best translation system performances for the semantic task are gained from their combination at different stages of the portability methodology. We have evaluated the portability algorithms on the French MEDIA corpus, using French as the source language and Spanish as the target language. The experiments show the effectiveness of the proposed methods with respect to the source language SLU baseline.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们对多目标语言的口语理解(SLU)模型学习问题很感兴趣。学习这样的模型需要带注释的语料库,而移植到不同的语言则需要具有平行文本翻译和语义注释的语料库。本文从无目标文本、无语义标注开始,研究如何在目标语言中学习语言语言单元模型。我们提出的算法基于利用多个翻译系统的多样性(在性能和覆盖范围方面)的思想,在罗曼语对、法语和西班牙语的情况下,转移统计上稳定的词到概念映射。每个翻译系统在词汇层面上的表现各不相同(wrt BLEU)。在可移植性方法的不同阶段,对语义任务的翻译系统性能进行了优化。我们评估了法语MEDIA语料库上的可移植性算法,使用法语作为源语言,西班牙语作为目标语言。实验结果表明,所提方法相对于源语言SLU基线是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining multiple translation systems for Spoken Language Understanding portability
We are interested in the problem of learning Spoken Language Understanding (SLU) models for multiple target languages. Learning such models requires annotated corpora, and porting to different languages would require corpora with parallel text translation and semantic annotations. In this paper we investigate how to learn a SLU model in a target language starting from no target text and no semantic annotation. Our proposed algorithm is based on the idea of exploiting the diversity (with regard to performance and coverage) of multiple translation systems to transfer statistically stable word-to-concept mappings in the case of the romance language pair, French and Spanish. Each translation system performs differently at the lexical level (wrt BLEU). The best translation system performances for the semantic task are gained from their combination at different stages of the portability methodology. We have evaluated the portability algorithms on the French MEDIA corpus, using French as the source language and Spanish as the target language. The experiments show the effectiveness of the proposed methods with respect to the source language SLU baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信