大型字母源的有损Lempel-Ziv算法及其在图像压缩中的应用

W. Finamore, Marcelo de A. Leister
{"title":"大型字母源的有损Lempel-Ziv算法及其在图像压缩中的应用","authors":"W. Finamore, Marcelo de A. Leister","doi":"10.1109/ICIP.1996.559474","DOIUrl":null,"url":null,"abstract":"Two practical lossy Lempel-Ziv schemes are proposed in this paper. The schemes are suitable for compression of sources with large alphabet cardinality. Computer simulation results obtained by compressing the output of a Gaussian source revealed a performance comparable to the performance of scalar quantization followed by entropy coding. Compression of DCT transformed and subband decomposed images showed a performance close to the performance of JPEG compressed images.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Lossy Lempel-Ziv algorithm for large alphabet sources and applications to image compression\",\"authors\":\"W. Finamore, Marcelo de A. Leister\",\"doi\":\"10.1109/ICIP.1996.559474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two practical lossy Lempel-Ziv schemes are proposed in this paper. The schemes are suitable for compression of sources with large alphabet cardinality. Computer simulation results obtained by compressing the output of a Gaussian source revealed a performance comparable to the performance of scalar quantization followed by entropy coding. Compression of DCT transformed and subband decomposed images showed a performance close to the performance of JPEG compressed images.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.559474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.559474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了两种实用的有损Lempel-Ziv格式。该方案适用于具有较大字母基数的源的压缩。通过压缩高斯源的输出得到的计算机模拟结果表明,其性能与标量量化后进行熵编码的性能相当。对DCT变换和子带分解后的图像进行压缩,其压缩性能接近JPEG压缩图像的压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossy Lempel-Ziv algorithm for large alphabet sources and applications to image compression
Two practical lossy Lempel-Ziv schemes are proposed in this paper. The schemes are suitable for compression of sources with large alphabet cardinality. Computer simulation results obtained by compressing the output of a Gaussian source revealed a performance comparable to the performance of scalar quantization followed by entropy coding. Compression of DCT transformed and subband decomposed images showed a performance close to the performance of JPEG compressed images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信