基于特征差异的彩色目标SSDA

Ligong Sun, Sujuan Li, Leiming Zhang, Fei Xiang
{"title":"基于特征差异的彩色目标SSDA","authors":"Ligong Sun, Sujuan Li, Leiming Zhang, Fei Xiang","doi":"10.1109/ICCSEE.2012.387","DOIUrl":null,"url":null,"abstract":"The paper proposes a sequential similarity detection algorithm (SSDA) for colored target based on characteristic differences. It analyzes basic SSDA, combines the characteristics of color, shape and size, then improves the SSDA. Experimental results show that the improved SSDA reduces the computational complexity, improves target identification accuracy, with better real-time.","PeriodicalId":132465,"journal":{"name":"2012 International Conference on Computer Science and Electronics Engineering","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SSDA for Colored Target Based on Characteristic Differences\",\"authors\":\"Ligong Sun, Sujuan Li, Leiming Zhang, Fei Xiang\",\"doi\":\"10.1109/ICCSEE.2012.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a sequential similarity detection algorithm (SSDA) for colored target based on characteristic differences. It analyzes basic SSDA, combines the characteristics of color, shape and size, then improves the SSDA. Experimental results show that the improved SSDA reduces the computational complexity, improves target identification accuracy, with better real-time.\",\"PeriodicalId\":132465,\"journal\":{\"name\":\"2012 International Conference on Computer Science and Electronics Engineering\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Computer Science and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSEE.2012.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSEE.2012.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于特征差异的彩色目标序列相似性检测算法。分析了基本的SSDA,结合颜色、形状和尺寸的特点,对SSDA进行了改进。实验结果表明,改进的SSDA算法降低了计算复杂度,提高了目标识别精度,具有较好的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSDA for Colored Target Based on Characteristic Differences
The paper proposes a sequential similarity detection algorithm (SSDA) for colored target based on characteristic differences. It analyzes basic SSDA, combines the characteristics of color, shape and size, then improves the SSDA. Experimental results show that the improved SSDA reduces the computational complexity, improves target identification accuracy, with better real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信